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Chapter 0

Introduction

Abstract
This document is concerned with studying various properties of infinite symmetric groups. These groups are particularly
interesting as all groups are isomorphic to permutation groups, and every permutation group is a subgroup of an infinite

symmetric group.

0.1 Declaration

I certify that this project report has been written by me, is a record of work carried out by me, and is essentially different
from work undertaken for any other purpose or assessment.

0.2 Introduction

Throughout this document we will be working using the ZFC axioms, and in particular, we will make use of the axiom of
choice. In this document we aim to prove many results concerning infinite symmetric groups including the following. If Ω
is an infinite set then:

1. All elements of Sym(Ω) can be written as a commutator of elements of Sym(Ω),

2. The group Sym(Ω), when viewed as a semigroup, satisfies the semigroup Bergman property,

3. The stong cofinality of Sym(Ω) is uncountable,

4. The group Sym(Ω) can we written as a product of 10 of its abelian subgroups,

5. There exists a family of 22|Ω| pairwise non-conjugate maximal subgroups of Sym(Ω),

6. We will classify which finite partitions of Ω have maximal subgroups of Sym(Ω) as their setwise stabilisers.

This project is organised as follows: We will introduce some notation and definitions that the reader is expected to be
reasonably familiar with. We will then spend a chapter proving various results which are not directly related to infinite
symmetric groups but will be needed at various points in the document. We will spend the remaining chapters proving
various interesting results about infinite symmetric groups.

This project was researched and referenced as follows:

1. The basic definitions and notation section contains only definitions that I was either already familiar with or were
directly told to me by my supervisor. These thing are generally considered to be ‘common knowledge’ in pure
mathematics.

2. Chapter 2 is a result of my supervisor directing me towards a proof of the commutator result given at the end of
the section. He did this by suggesting theorems for me to prove. However the individual proofs contained in this
section were all written by me.

3. In Chapters 1, 3 and 4 most of what is written is based on theorems and proofs taken from papers, with some
intermediate proofs constructed by me when I was able to. These proofs have be rewritten in my own words. In
some cases these proofs have been altered to be more compatible with this document, to explain further things the
original said to be ‘clear’ or to yield a slightly different result while preserving the fundamental idea of the proof.
When a proof is given which is based on the work of another paper this is stated at the start of the proof.
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0.3 Basic Definitions and Notation

In this section we will define various terms which are used throughout the document. It is expected that the reader will
already be reasonably familiar with most of these terms and therefore we will omit some details and proofs of the validity
of these definitions. We will make use of the following notations:

1. If S is a set we use the notation P (S) to denote the power set of S,

2. We use N to denote the set {1, 2, . . .} and N0 will be used to denote the set {0, 1, 2, . . .},

3. We use ⊆ to denote a subset and ⊂ to denote a strict subset,

4. If S is a subset of some set which is clear from context, we use Sc to denote the complement of S,

5. We will use right actions of functions,

6. If A and B are sets then we use AB to denote the set of functions from B to A,

7. If A and B are sets then A t B is used to represent the disjoint union of A and B, that is A t B := {(a, 0) : a ∈
A} ∪ {(b, 1) : b ∈ B},

8. If A and B are sets then we use A4B to denote their symmetric difference, that is A4B := (A\B) ∪ (B\A),

9. We will use the notations 〈S〉G, 〈S〉S and 〈S〉T to denote respectively the group, semigroup and topology generated
by the set S,

10. We will use the notation ≤G to denote a subgroup and the notation <G to denote a strict subgroup.

11. If a set is ordered in a way which is clear from context we will use < for strictly less than, and ≤ for less than or
equal to.

Definition 0.3.1 If f : X → Y is a function then the domain, image, fix and support oaf f re defined by:

dom(f) := X,

img(f) := {y ∈ Y : (x)f = y for some x ∈ X},
fix(f) := {x ∈ X : (x)f = x},

supp(f) := {x ∈ X : (x)f 6= x}.

Definition 0.3.2 Let Ω be an infinite set and let M ⊆ Ω. We call M a moiety of Ω if |M | = |M c| = |Ω|.

Definition 0.3.3 A partially ordered set is a pair (P,≤) where ≤ is a subset of P × P satisfying the below conditions.
We use the notation a ≤ b to denote (a, b) ∈≤ and the notation a < b to denote a ≤ b and a 6= b.

1. Reflexive: For all p ∈ P we have p ≤ p,

2. Anti-Symmetric: If a ≤ b and b ≤ a then a = b,

3. Transitive: If a ≤ b and b ≤ c then a ≤ c.

Definition 0.3.4 A totally ordered set (T,≤) is a partially ordered set in which we have, for all a, b ∈ T , that either
a ≤ b or b ≤ a.

Definition 0.3.5 A well ordered set (W,≤) is a totally ordered set, in which for all S ⊆ W there exists m ∈ S, such
that m ≤ s, for all s ∈ S.

If R is a function or partial order we will use the notation R|S to denote R restricted to the elements of S.

Definition 0.3.6 Let (P,≤) be a partially ordered set and let C ⊆ P . We call C a chain if (C,≤ |C) is a totally ordered
set.

Definition 0.3.7 Let (W,≤) be a well ordered set. We call S ⊆ W an initial segment of W if S = {x ∈ W : x < M}
for some M ∈W .

Definition 0.3.8 If P1 and P2 are partially ordered sets and φ : P1 → P2 is an order preserving bijection, then we call
φ an order isomorphism. In this case we say that P1 and P2 are order isomorphic.

Definition 0.3.9 A semigroup is a pair (S, ∗) where S is a set, and ∗ : S × S → S is a function satisfying the condition
below. If a, b ∈ S then we use the notation a ∗ b (or sometimes just ab) to denote ∗(a, b).

Associativity: For all a, b, c ∈ S we have that (a ∗ b) ∗ c = a ∗ (b ∗ c).
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Definition 0.3.10 A group is a semigroup (G, ∗) which satisfies the following conditions:

1. Identity : There is an element e ∈ G such that for all g ∈ G we have eg = ge = g,

2. Inverses: For all g ∈ G there exists g−1 ∈ G such that gg−1 = g−1g = e.

Definition 0.3.11 If G is a group and f, g ∈ G, then we say f and g are conjugate if f = h−1gh for some h ∈ G.

Definition 0.3.12 If Ω is a set, then the symmetric group Sym(Ω) is defined to be the set of bijections f : Ω → Ω,
under composition of functions.

An infinite symmetric group is simply a symmetric group which acts on an infinite set.

Definition 0.3.13 Let Ω be a set and let S be a set on which Sym(Ω) acts.
The pointwise stabiliser of S and setwise stabiliser of S are defined to be the following:

Pstab(S) = {f ∈ Sym(Ω) : (x)f = x for all x ∈ S}, Sstab(S) = {f ∈ Sym(Ω) : (x)f ∈ S ⇐⇒ x ∈ S}.

It’s not hard to verify that these are groups, and that the pointwise stabiliser is a normal subgroup of the setwise stabiliser.

Definition 0.3.14 Let Ω be a set and let S ⊆ Ω. We introduce the notation SymΩ(S) := Pstab(Sc), for the subgroup
of Sym(Ω) which is naturally isomorphic to Sym(S).

Definition 0.3.15 Let Ω be a set, let G ⊆ Sym(Ω) and let S be a subset of Ω. We say that S is full in G or G acts
fully on S if for all f ∈ Sym(S) there exists f ′ ∈ G such that f ′|S = f . Note that this doesn’t necessarily mean that
SymΩ(S) ⊆ G.

Definition 0.3.16 Let G be a group which acts on a set S. Then we say G is transitive on S if for all x, y ∈ S there is
an f ∈ G such that (x)f = y.

Definition 0.3.17 If Ω is a set, p ∈ Ω and S ⊆ Sym(Ω) then the orbit of p with respect to S is defined by

orbS(p) := {x ∈ Ω : x = (p)f for some f ∈ 〈S〉G}.

Definition 0.3.18 Let Ω be a set, and let f ∈ Sym(Ω). The term disjoint cycle shape of f is used to describe the
partition of Ω into equivalence classes under the equivalence relation given by

a ∼ b ⇐⇒ a ∈ orb{f}(b)

In particular how many elements of Ω/ ∼ there are of each cardinality. If κ is a non-zero cardinal, then the term κ-cycle
will be used to refer to f |P where P ∈ Ω/ ∼ and |P | = κ.
Note that all cycles must have countable domain, as the orbit of a point under a cyclic group is countable. We will also
use the notation (. . . a−1, a0, a1, a2 . . .) to denote a cycle which maps ai to ai+1 and the notation (a0, a1, a2 . . . an−1) to
denote a cycle which maps ai to ai+1 mod n .

Definition 0.3.19 A metric space is a pair (X, d) where d : X×X → R is a function satisfying the following conditions:

1. Non-negativity : img(d) ⊆ [0,∞),

2. Identity of indiscernibles: If x, y ∈ X we have that d(x, y) = 0 if and only if x = y,

3. Symmetry : If x, y ∈ X we have that d(x, y) = d(y, x),

4. Triangle inequality : If x, y, z ∈ X we have that d(x, y) ≤ d(x, z) + d(y, z).

Definition 0.3.20 We say that a metric space is complete if every Cauchy sequence is convergent.

Definition 0.3.21 A topological space is a pair (X, T ), where X is a set and T ⊆ P (X) satisfying the following
conditions:

1. We have ∅ ∈ T and X ∈ T ,

2. If S ⊆ T is finite then
⋂
S ∈ T ,

3. If S ⊆ T then
⋃
S ∈ T .

Definition 0.3.22 If (X, T ) is a topological space then we use the following notations and terminology:
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1. If U ∈ T we say that U is open,

2. If F c ∈ T we say that F is closed,

3. If S ⊆ X then we use S◦ to denote the largest open set contained in S (we call this the interior of S),

4. If S ⊆ X then we use S̄ to denote the smallest closed set containing S (we call this the closure of S),

5. If (N̄)◦ = ∅ then we say that N is nowhere-dense,

6. If M is a countable union of nowhere dense sets then we say that M is meagre,

7. If B ⊆ T satisfies the condition that T = {
⋃
S : S ⊆ B} then we say that B is a basis for T ,

8. If (X, d) is a metric space, and {{y ∈ X : d(x, y) < ε} : x ∈ X, ε > 0} is a basis for T then we say that T is induced
by d.

Definition 0.3.23 If {(Xi, Ti) : i ∈ I} is a family of topological spaces then we define their product topology by∏
i∈I

(Xi, Ti) := (
∏
i∈I

Xi, T ).

Where T is the topology with basis{∏
i∈I

Ui : Ui ∈ Ti for all i and all but finitely many Ui are Xi

}
.

Definition 0.3.24 A subset D of a topological space (X, T ) is called dense if for all U ∈ T \{∅} we have D ∩ U 6= ∅.
Note this is equivalent to saying X = D̄.

Definition 0.3.25 A topological group (X, ∗, T ) is a triple where (X, ∗) is a group and (X, T ) is a topological space such
that the functions: ∗ : X ×X → X and −1 : X → X are both continuous (where the topology on X ×X is the product
topology and −1 is the function which sends an element of X to its group inverse).
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Chapter 1

Background Topics

In this chapter we prove various results concerning areas of mathematics that are not directly related to infinite symmetric
groups but will be needed in later chapters.

1.1 Topology and Baire Category

In this section we prove some well known results related to baire category and topology which we will need in chapter 2.

Theorem 1.1.1. If ((X1, d1), (X2, d2) . . .) are complete metric spaces, then (Xπ, dπ) is a complete metric space, where

Xπ :=

∞∏
i=1

Xi, dπ((x1,1, x1,2 . . .), (x2,1, x2,2 . . .)) :=
∑
i∈N

di(x1,i, x2,i)

2i × (1 + di(x1,i, x2,i))
.

Proof. We first show that dπ is a metric. The non-negativity and symmetry conditions follow from the fact that the di
are non-negative and symmetric for all i. Let

x1 := (x1,1, x1,2 . . .), x2 := (x2,1, x2,2 . . .), x3 := (x3,1, x3,2 . . .)

be arbitrary elements of Xπ.
Identity of indiscernibles:

dπ(x1, x1) =
∑
i∈N

di(x1,i, x1,i)

2i × (1 + di(x1,i, x1,i))
=
∑
i∈N

0

2i × (1 + 0)
= 0,

dπ(x1, x2) = 0 =⇒
∑
i∈N

di(x1,i, x2,i)

2i × (1 + di(x1,i, x2,i))
= 0 =⇒ di(x1,i, x2,i)

2i × (1 + di(x1,i, x2,i))
= 0 for all i ∈ N

=⇒ di(x1,i, x2,i) = 0 for all i ∈ N =⇒ x1,i = x2,i for all i ∈ N =⇒ x1 = x2.

Triangle inequality: Note that f : x→ x
1+x = 1− 1

1+x is an increasing function on [0,∞), as it has derivative 1
(1+x)2 > 0.

dπ(x1, x3) =
∑
i∈N

di(x1,i, x3,i)

2i × (1 + di(x1,i, x3,i))

=
∑
i∈N

f(di(x1,i, x3,i))

2i

≤
∑
i∈N

f(di(x1,i, x2,i) + di(x2,i, x3,i))

2i

=
∑
i∈N

di(x1,i, x2,i) + di(x2,i, x3,i)

2i × (1 + di(x1,i, x2,i) + di(x2,i, x3,i))

=
∑
i∈N

di(x1,i, x2,i)

2i × (1 + di(x1,i, x2,i) + di(x2,i, x3,i))
+
∑
i∈N

di(x2,i, x3,i)

2i × (1 + di(x1,i, x2,i) + di(x2,i, x3,i))

≤
∑
i∈N

di(x1,i, x2,i)

2i × (1 + di(x1,i, x2,i))
+
∑
i∈N

di(x2,i, x3,i)

2i × (1 + di(x2,i, x3,i))

= dπ(x1, x2) + dπ(x2, x3).

7



We now show that (Xπ, dπ) is complete. Let (xn)n∈N where xn = (xn,1, xn,2 . . .) for all n ∈ N be a Cauchy sequence. We
have that for all ε > 0 there exists an N ∈ N such that for all n,m ≥ N

ε ≥ dπ(xn, xm) =
∑
i∈N

f(di(xn,i, xm,i))

2i
≥ f(di(xn,i, xm,i))

2i
for all i ∈ N.

We have f is a continuous increasing function with f(0) = 0, and 2i is a constant for all i. It follows that for all i ∈ N
the sequence (x1,i, x2,i . . .) is Cauchy with respect to di. Thus for all i ∈ N the sequence (x1,i, x2,i . . .) is convergent with
respect to di.
Let xl := (xl,1, xl,2 . . .) be the sequence of these limits. It suffices to show that (xn)n∈N converges to xl.
Let ε > 0. We have that ∑

i∈N

di(xn,i, xl,i)

2i × (1 + di(xn,i, xl,i))
≤
∑
i∈N

1

2i

for all n ∈ N. It therefore follows that there exists k ∈ N, such that for all n ∈ N we have

∞∑
i=k+1

di(xn,i, xl,i)

2i × (1 + di(xn,i, xl,i))
≤ ε

2
.

As (x1,i, x2,i . . .) converges to xl,i for all i ∈ N, there exists N ∈ N such that for all n ≥ N and i ∈ {1, 2 . . . k} we have

di(xn,i, xl,i)

2i × (1 + di(xn,i, xl,i))
≤ di(xn,i, xl,i) ≤

ε

2k
.

For all n ≥ N it follows that

dπ(xn, xl) =
∑
i∈N

di(xn,i, xl,i)

2i × (1 + di(xn,i, xl,i))
=

k∑
i=1

di(xn,i, xl,i)

2i × (1 + di(xn,i, xl,i))
+

∞∑
i=k+1

di(xn,i, xl,i)

2i × (1 + di(xn,i, xl,i))

≤

(
k∑
i=1

di(xn,i, xl,i)

2i × (1 + di(xn,i, xl,i))

)
+
ε

2
≤

(
k∑
i=1

ε

2k

)
+
ε

2
= ε.

So (xn)n∈N converges to xl as required.

Definition 1.1.2 A set S in a topological space is said to be Gδ if S is a countable intersection of open sets.

Definition 1.1.3 A topological space is called completely metrisable if it is induced by a complete metric space.

Theorem 1.1.4. A Gδ subset of a completely metrisable topological space is completely metrisable.

Proof. The following proof is based on the proof of Theorem 1.2 in [2].
Let S :=

⋂
i∈N Ui for open sets Ui, be a Gδ subset of a completely metrisable topological space (X, T ) induced by complete

metric space (X, d).
Define the function ψ : S → (X × R× R . . .) by

(x)ψ =

(
x,

1

d(x, U c1 )
,

1

d(x, U c2 )
, . . .

)
Note that here we do not divide by zero as the U ci are closed, so if d(x, U ci ) = 0 then there is a sequence of points in U ci
converging to x and thus x ∈ U ci a contradiction. By Theorem 1.1.1 we have that (X×R×R . . . , dπ) is a complete metric
space.
Claim: The function φ : S → img(ψ), defined by (x)φ = (x)ψ, is a homeomorphism.

Proof of Claim: By construction φ is surjective, and φ can be seen to be injective by considering the first coordinate
of the image. We need to show φ is continuous. Let ε > 0 and x ∈ S. Let k ∈ N be such that

∑∞
i=k+1

1
2i+1 ≤ ε

3 and let

δ := min

{
ε

3
,

min{d(x, U ci ) : i ∈ {1, 2 . . . k}}
2

,
εmin{d(x, U ci ) : i ∈ {1, 2 . . . k}}2

6k

}
Let y ∈ S be such that d(x, y) < δ. For φ to be continuous it suffices to show that dπ((x)φ, (y)φ) ≤ ε.

dπ((x)φ, (y)φ) =
d(x, y)

1 + d(x, y)
+

∞∑
i=1

1

2i+1


∣∣∣ 1
d(x,Uci ) −

1
d(y,Uci )

∣∣∣
1 +

∣∣∣ 1
d(x,Uci ) −

1
d(y,Uci )

∣∣∣
 ≤ d(x, y) +

ε

3
+

k∑
i=1

1

2i+1


∣∣∣d(y,Uci )−d(x,Uci )
d(x,Uci )d(y,Uci )

∣∣∣
1 +

∣∣∣ 1
d(x,Uci ) −

1
d(y,Uci )

∣∣∣

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≤ ε

3
+
ε

3
+

k∑
i=1

∣∣∣∣d(y, U ci )− d(x, U ci )

d(x, U ci )d(y, U ci )

∣∣∣∣ ≤ ε

3
+
ε

3
+

k∑
i=1

d(x, y)

d(x, U ci )d(y, U ci )
≤ ε

3
+
ε

3
+

k∑
i=1

d(x, y)

d(x, U ci )(d(x, U ci )− δ)

≤ ε

3
+
ε

3
+

k∑
i=1

d(x, y)

d(x, U ci )
d(x,Uci )

2

≤ ε

3
+
ε

3
+

k∑
i=1

2δ

d(x, U ci )d(x, U ci )
≤ ε

3
+
ε

3
+

k∑
i=1

2εmin{d(x, U ci ) : i ∈ {1, 2 . . . k}}2

6kd(x, U ci )2

≤ ε

3
+
ε

3
+

k∑
i=1

ε

3k
≤ ε.

Finally we need to show φ−1 is continuous. Let ε > 0 and x ∈ img(φ), let δ := min{ ε2 ,
1
2} and let y ∈ img(φ).

dπ(x, y) < δ =⇒ d((x)φ−1, (y)φ−1)

1 + d((x)φ−1, (y)φ−1)
< δ =⇒ d((x)φ−1, (y)φ−1) < δ(1 + d((x)φ−1, (y)φ−1))

=⇒ d((x)φ−1, (y)φ−1)(1− δ) < δ =⇒ d((x)φ−1, (y)φ−1) <
δ

1− δ
≤ 2δ ≤ ε.

We have that S is homeomorphic to img(φ) which is contained in a complete metric space. So to show S is completely
metrisable it suffices to show that img(φ) is closed and therefore complete.
Let ((xn)φ)n∈N be a sequence in img(φ) which converges to (x, r1, r2 . . .) in (X × R× R . . .). For all i ∈ N we now have

ri = lim
n→∞

1

d(xn, U ci )
=

1

d(limn→∞ xn, U ci )
=

1

d(x, U ci )

=⇒ d(x, U ci ) 6= 0 =⇒ x /∈ U ci =⇒ x ∈ Ui.

It follows that x ∈
⋂
i∈N Ui = S. As x ∈ S and 1

d(x,Uci ) = ri for all i ∈ N, we have that (x, r1, r2, . . .) = (x)φ ∈ img(φ) as

required.

In fact it is also true that if a subspace of a completely metrizable space is completely metrizable, then this subspace is
Gδ. This is proven in [2]. However this fact is not required in this document so the proof is omitted.

Theorem 1.1.5. If N is nowhere dense in a topological space (X, T ), then N c is dense.

Proof. Suppose for a contradiction that U is a non-empty open set satisfying U ∩N c = ∅.

U ∩N c = ∅ =⇒ U\N = ∅ =⇒ U ⊆ N =⇒ U ⊆ N =⇒ U ⊆ (N)◦ =⇒ (N)◦ 6= ∅.

The penultimate implication follows because U is open. We therefore have that (N)◦ 6= ∅, which is a contradiction as N
is nowhere dense.

Theorem 1.1.6. Let (X, T ) be a topological space induced by a metric d. A set N is nowhere dense if and only if for all
x1 ∈ X and r1 > 0, there exists an x2 ∈ X and an r2 > 0 such that B(x2, r2) ⊆ B(x1, r1)\N .

Proof. (⇒) Let N be nowhere dense. Suppose for a contradiction that there exists x1 ∈ X and r1 > 0 such that there are
no x2 ∈ X and r2 > 0 satisfying B(x2, r2) ⊆ B(x1, r1)\N .
Let x ∈ B(x1, r1). As B(x1, r1) is open there exists an r > 0 such that B(x, r) ⊆ B(x1, r1). By assertion B(x, r) *
B(x1, r1)\N , so there exists y ∈ N ∩ B(x, r). As r can be made arbitrarily small, we therefore have that x ∈ N̄ . As x
was arbitrary it follows that B(x1, r1) ⊆ N̄ , and therefore B(x1, r1) ⊆ (N)◦. So x1 ∈ (N)◦, this is a contradiction as N is
nowhere dense.
(⇐) Suppose for a contradiction that (N)◦ 6= ∅. Let x ∈ (N)◦. As (N)◦ is open there exists r > 0 such that B(x, r) ⊆ (N)◦.
By assertion there exists x2 ∈ X and r2 > 0 such that B(x2, r2) ⊆ B(x, r)\N ⊆ (N)◦\N ⊆ N\N . We therefore have
x2 ∈ B(x2, r2) ⊆ N\N and in particular x ∈ N̄ .
But B(x2, r2) is open and contains x2 and B(x2, r2) ⊆ B(x, r)\N so B(x2, r2) ∩ N = ∅. This contradicts the fact that
x2 ∈ N̄ .

Definition 1.1.7 A Baire Space is a topological space in which any countable collection of dense open sets (Un)n∈N has
dense intersection.

Theorem 1.1.8 (Baire Category Theorem). Every completely metrisable topological space is a Baire Space. In addition,
a non-empty completely metrisable space is not meagre.

Proof. The following proof is based on the proof of the Baire Category Theorem found in [1].
Let (X, T ) be a completely metrisable topological space induced by the complete metric d. Let (Un)n∈N be a countable
collection of dense open sets.
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We want to show that I =
⋂
i∈N Ui is dense in X. Let x ∈ X. As x is arbitrary it suffices to show that x ∈ Ī.

Let Ux be an open set containing x. It suffices to show that I ∩Ux 6= ∅. As T is induced by d, there exists an r0 > 0 such
that B(x, r0) ⊆ Ux.
Let B0 and V0 be B(x, r0). Let Vn := Un ∩ Bn−1 for all n ∈ N and Bn := B(xn, rn) for all n ∈ N be such that
Bn ⊆ B(xn, 2rn) ⊆ Vn and 0 < rn <

rn−1

2 .
Note that this construction is possible as each Vi is constructed by intersecting an open set with an open set, so each Vi
is open.
In addition Vi is non-empty as the intersection of a dense set and a non-empty open set.
We will now show that (xn)n is a Cauchy sequence. Let ε > 0 and choose N ∈ N large enough that r0

2N
< ε

2 . For n ≥ N
we have xn ∈ Bn ⊆ Vn ⊆ Bn−1 . . . . . . ⊆ BN = B(xN , rN ) ⊆ B(xN ,

r0
2N

). This final inclusion follows as each B has radius
less than half the size of the previous one. So we have that d(xn, xN ) < r0

2N
< ε

2 .
So for n,m ≥ N we have

d(xn, xm) ≤ d(xn, xN ) + d(xm, xN ) <
ε

2
+
ε

2
= ε.

We therefore have that (xn)n is Cauchy.
As (X, d) is complete we have that (xn)n is convergent. Let y := limn→∞ xn. It suffices to show that y ∈ Ux and y ∈ I.
For k ∈ N, the sequence (xk+1, xk+2, . . .) converges to y. For all i > k we have

xi ∈ Bi ⊆ Bi−1 . . . ⊆ Bk+1 ⊆ Bk+1 = {z ∈ X : d(xk+1, z) ≤ rk+1} ⊆ {z ∈ X : d(x, z) < 2rk+1} ⊆ Vk+1 ⊆ Bk.

As for all i > k we have xi ∈ Bk+1 a closed set, we have that y ∈ Bk+1 ⊆ Bk ⊆ Vk ⊆ Uk. We therefore have that
y ∈

⋂
i∈N Ui = I, and y ∈ B1 ⊆ B0 ⊆ Ux as required.

Suppose for a contradiction that (X, T ) is a non-empty completely metrisable space such that X =
⋃
i∈N

Ni(=
⋃
i∈N

Ni) where

the Ni are nowhere dense for all i ∈ N. As (X, T ) is completely metrisable we have that (X, T ) is a Baire space.
Consider the sets (Ni

c
)i∈N. As the complements of closed nowhere dense sets, these sets are open and dense. We therefore

have the following

⋂
i∈N

Ni
c

is dense =⇒

(⋃
i∈N

Ni

)c
is dense =⇒ (X)c is dense =⇒ ∅ is dense.

As (X, T ) is a non-empty topological space, X is a non-empty open set. But X ∩ ∅ = ∅, this contradicts the fact that ∅
is dense.

Theorem 1.1.9. If (X, ∗, T ) is a topological group, then we have that for all x ∈ X the functions given by:

(y)φxr = yx, (y)φxl = xy

are homeomorphisms.

Proof. Let x ∈ X, as φxr has the inverse φx−1
r

and φxl has inverse φx−1
l

we have that these are bijections. In addition
we have by symmetry that if φxr is continuous then φ−1

xr , φxl and φ−1
xl

are continuous. It therefore suffices to show that
φxr is continuous.
Let U be open in T . We will show that (U)φ−1

xr is open.
We have that (U)∗−1 is open. By definition of the product topology, this means that there exists a collection of open sets
B such that ∪B = (U)∗−1 and for all b ∈ B we have b = Ub,1 × Ub,2 for open sets Ub,1 and Ub,2. As Ub,1 is open for all
b ∈ B, it suffices to show that (U)φ−1

xr = ∪{Ub,1 : x ∈ Ub,2}.

y ∈ (U)φ−1
xr ⇐⇒ yx ∈ U ⇐⇒ (y, x) ∈ (U)∗−1 ⇐⇒ (y, x) ∈ ∪B
⇐⇒ there exists b ∈ B such that (y, x) ∈ b
⇐⇒ there exists b ∈ B such that y ∈ Ub,1 and x ∈ Ub,2
⇐⇒ y ∈ ∪{Ub,1 : x ∈ Ub,2}.

We therefore have that (U)φ−1
xr = ∪{Ub,1 : x ∈ Ub,2} and is thus open as required.

1.2 Ordinals

Definition 1.2.1 An ordinal is a set α satisfying the following conditions:

1. Transitivity: If x ∈ α and y ∈ x then y ∈ α,

2. Well ordered: The pair (α, {(a, b) ∈ α× α : we have precisely one of a ∈ b or a = b)}) is a well ordered set.
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It is not hard to see that if α is an ordinal then α+ := α ∪ {α} is also an ordinal. This is in fact the smallest ordinal
containing alpha.

Definition 1.2.2 If α is an ordinal then α+ 0 := α and α+ k := (α+ (k− 1))+ for all k ∈ N. If α 6= β+ for any ordinal
β then we say that α is a limit ordinal.

Theorem 1.2.3. If α is an ordinal then α = β + k for some limit ordinal β and k ∈ N.

Proof. Suppose that α 6= β + k for any limit ordinal β and k ∈ N. It follows that α is not a limit ordinal so α = α1 + 1
for some ordinal α1. It follows that α1 is not a limit ordinal so there exists an ordinal α2 such that α1 = α2 + 1 and
thus α = α2 + 2. By repeating this we can construct a decreasing sequence of ordinals (αn)n ⊆ α. This sequence has no
minimum element which contradicts the fact that α is well ordered.

Theorem 1.2.4. Every element of an ordinal is an ordinal.

Proof. This proof is based on the proof of Theorem 2.6 in [7].
Let α be an ordinal and let x ∈ α.
Transitivity: If z ∈ y ∈ x then we have that y ∈ α and z ∈ α by the transitivity of α. Also z < y < x so by the transitivity
of α as a well ordered set we have z < x and thus z ∈ x.
Well ordered: By the transitivity of α we have that x ⊆ α and therefore is well ordered by the required ordering.

In the following theorem we use the word class to refer to all the sets with a specific property.

Theorem 1.2.5. If C is a non-empty class of ordinals then it has a least element, that is an element contained in all
other elements.

Proof. This proof is based on the proof if Theorem 2.11 in [7].
We will show that I :=

⋂
C is the desired element.

Claim: If α ∈ C and α 6= I then min(α\I) = I.
Proof of Claim: Let α ∈ C\I. Let x ∈ min(α\I). We have that x < min(α\I) and x ∈ α by transitivity so x ∈ I.
Conversely let x ∈ I. We want to show that x ∈ min(α\I). As x ∈ I we have that x 6= min(α\I). Suppose for a
contradiction that x > min(α\I). Then min(α\I) ∈ x and x ∈ I, so by transitivity of ordinals min(α\I) is an element of
every element of C, and is thus an element of I, a contradiction. It follows that x < min(α\I) and thus x ∈ min(α\I) as
required.
It follows from the Claim that if I ∈ C then I is contained in all other elements as required. Suppose for a contradiction
that I /∈ C. By the Claim we have that I is an element of every element of C and thus I ∈ ∩C = I. As I is an
element of the elements of C which are ordinals, we have that I is an ordinal. Therefore I is well ordered with I < I, a
contradiction.

Corollary 1.2.6. If α and β are ordinals then we have one of α ∈ β, β ∈ α or α = β.

Corollary 1.2.7. All transitive sets of ordinals are ordinals.

Theorem 1.2.8. If I1 and I2 are initial segments of a well ordered set and there is an order isomorphism φ : I1 → I2,
then φ is the identity map and thus I1 = I2.

Proof. Let φ : I1 → I2 be an order preserving bijection. Suppose for a contradiction that an element of I1 is not fixed by
φ. Let m be the minimum such element. It follows that (m)φ 6= m. If (m)φ < m then ((m)φ)φ = (m)φ, contradicting
the injectivity of φ. It follows that m < (m)φ ∈ I2. Thus we have m ∈ I2 = img(φ). Similarly, if (m)φ−1 < m then
((m)φ−1)φ−1 = (m)φ−1, contradicting the injectivity of φ−1. It follows that we have both (m)φ > m and (m)φ−1 > m.
As φ is order preserving we conclude that (m)φ > m and m = ((m)φ−1)φ > (m)φ. This is a contradiction.

Corollary 1.2.9. If α and β are ordinals and there is a bijection φ : α→ β which preserves order. Then φ is the identity
map and thus α = β.

Proof. Observe that α and β are both initial segments of max(α, β)+.

Definition 1.2.10 A cardinal is defined to be an ordinal which in not in bijective correspondence with any lesser ordinal.

It will be shown in the next section that all sets are in bijective correspondence with an ordinal so this is a reasonable
way to view cardinality of sets in general. It will be useful to notice that all infinite cardinals are limit ordinals. We will
use the symbol ℵ0 to denote the smallest infinite cardinal. This set is often used as a definition for the naturals numbers
(with 0) and its elements will be viewed as the natural numbers in this document.
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1.3 Infinite sets

In this section we will prove various theorems concerning infinite sets which will be used throughout this document.

Theorem 1.3.1 (Zorn’s Lemma). If (P,≤) is a partially ordered set such that every chain has an upper bound, then P
has a maximal element M , that is an element such that there is no x ∈ P with x > M .

Proof. The following proof is based of the proofs of Lemma 3.3 and Theorem 4.2 in [11].
Suppose for a contradiction there is no maximal element. By the axiom of choice there is a choice function c for P(P )\{∅}.
For a ∈ P let Ga := {x ∈ P : x > a}. For C ⊆ P , a chain, let GC := {x ∈ P : x is an upper bound for C}. As P has no
maximal element and every chain has an upper bound we have that these sets are non-empty.
We call a chain C a c-chain if it satisfies the following:

1. C is well ordered by ≤,

2. If CM ⊂ C is an initial segment of C with maximal element M then min(C\CM ) = c(GM ),

3. If Cu ⊂ C is an initial segment of C with no maximal element then min(C\Cu) = c(GCu).

Claim 1: If C1 6= C2 are c-chains, and all initial segments of C1 are initial segments of C2, then C1 is an initial segment
of C2.
Proof of Claim: If C1 has a maximal element m then it follows from the definition of a c-chain that

m = min(C1\{x ∈ C1 : x < m}) = min(C2\{x ∈ C1 : x < m}).

It follows that C1 = {x ∈ C2 : x < min(C2\C1)} is an initial segment of C2. If C1 has no maximal element then it follows
that C1 ⊂ C2, as all elements of C1 are contained in an initial segment bounded above by a greater element of C1. It
again follows that C1 = {x ∈ C2 : x < min(C2\C1)} is an initial segment of C2.
Claim 2: If C1 6= C2 are c-chains then one is an initial segment of the other.
Proof of Claim: Suppose that C2 is not an initial segment of C1. By Claim 1 it suffices to show that all initial segments
of C1 are initial segments of C2. Suppose for a contradiction that this is not the case. The initial segments of C1 are
naturally well ordered by containment. There is therefore least initial segment I of C1 which is not an initial segment of
C2. As I is an initial segment of a c-chain we have that I is a c-chain. As I is the minimal initial segment of C1 which is
not an initial segment of C2 we have that all initial segments of I are initial segments of C2. It therefore follows by Claim
1 that I is an initial segment of C2 or C2 = I. Both of these cases are contradictions as I is not an initial segment of C2

by definition, and C2 is not an initial segment of C1.
Let S be the union of all c-chains of P . Note that for all elements x ∈ S there exists a c-chain Cx such that x = max(Cx).
This follows as x is contained in a c-chain, and if we restrict that c-chain to the elements less than or equal to x, then we
also have a c-chain. We will now show that S is a c-chain.

1. Let s, t ∈ S and let Cs and Ct be c-chains with s and t maximal respectively. By Claim 2, we have that either
Cs ⊆ Ct or Ct ⊆ Cs, so either s ≤ t or t ≤ s and therefore S is totally ordered. Let A ⊆ S be non-empty and let
t ∈ A. Consider the set B := {x ∈ A : x < t}. If B is empty then t is minimal in A, otherwise if B has a least
element then A has a least element and so S is well ordered. All x ∈ B are contained in a c-chain Cx with x as
maximal element. If Cx ⊃ Ct it follows that t ≤ x, a contradiction, so we have Cx ⊆ Ct and thus B ⊆ Ct so B has
a minimal element and S is well ordered.

2. Let SM ⊂ S be an initial segment with maximal element M . Let s ∈ S\SM . It follows that there is a c-chain
Cs ⊇ SM with maximal element s, and thus c(GM ) = min{y ∈ Cs : y /∈ {x ∈ Cs : x ≤M}} ∈ S. As c(GM ) ∈ Cs it
follows that c(GM ) ≤ s but s was arbitrary so we have that min{x ∈ S : x /∈ SM} = c(GM ) as required.

3. Let Su ⊂ S be an initial segment with no maximal element. Let s ∈ S\Su. Let Cs be a c-chain with s as its maximal
element. If x ∈ Su it follows there is a c-chain with x maximal, which is an initial segment of Cs and thus x ∈ Cs.
So we have that Su ⊂ Cs ⊆ S. As Cs is a c-chain it follows that c(GSu) = min{y ∈ Cs : y /∈ Su} ∈ S and, as s was
arbitrary and s ≥ c(GSu), we have that min{x ∈ S : x /∈ Cu} = c(GSu).

Now we have that S is a c-chain and there is no greater c-chain than S by definition. However if S has a maximal element
M then S ∪ {c(GM )} is a strictly greater c-chain and if S has no maximal element we have that S ∪ {c(GS)} is a strictly
greater c-chain so we have reached a contradiction.

Theorem 1.3.2. Every set A is well orderable.

Proof. The following proof is based of the proof of the same Theorem given in [10].
Let Ao := {(S,≤) : S ⊆ A,≤ is a well ordering of S}. Let Ao be partially ordered by

(S1,≤1) ≤ (S2,≤2) ⇐⇒ (S1 ⊆ S2 and ≤2 |S1
=≤1 and for all x1 ∈ S1, x2 ∈ S2\S1 we have x1 ≤2 x2).
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Let C ⊆ Ao be a chain. We claim that the tuple

(SC ,≤C) := ({a ∈ A : a ∈ S for some (S,≤) ∈ C}, {(a1, a2) ∈ A×A : a1 ≤ a2 for some (S,≤) ∈ C})

is an upper bound for C. Given any two elements x, y ∈ SC there is a well ordered set containing both x and y (each
is contained in an element of C so take the larger of these elements). So we have one of x ≤C y or x ≥C y. Finally, if
D ⊆ SC is non-empty then there exists (S,≤) ∈ C such that S ∩D 6= ∅. It follows that min(S ∩D) is minimal in D, as
by the definition of the ordering on Ao we have all elements of D\S are greater than it. So we have that (SC ,≤C) ∈ Ao.
By construction we also have that it is greater then all elements of C.
By Zorn’s Lemma, Ao has a maximal element (X,≤x). If X 6= A then there is an element a ∈ A\X. Therefore we have
that (X ∪ {a},≤x ∪{(x, a) : x ∈ X ∪ {a}} > (X,≤x), a contradiction. So we must have that A = X, and is well ordered
by ≤x.

Theorem 1.3.3. Every well ordered set (S,≤) is order isomorphic to an ordinal.

Proof. For x ∈ S, let Ix := {y ∈ S : y < x}. Note that the initial segments of S are well ordered by Ix ≤ Iy ⇐⇒ x ≤ y.
Suppose for a contradiction that there are initial segments of S which are not order isomorphic to an ordinal. Let Im be
the minimal such initial segment. As ordinals are only order isomorphic if they are equal, it follows that for all Ix < Im
there is a unique ordinal αx order isomorphic to Ix. By the axiom of replacement it follows that αm := {αx : x < m} is
a well-defined set. Let φ : Im → αm be defined by φ(x) = αx. We have that φ is injective as different initial segments
can’t be order isomorphic and it is surjective by the definition of αm. It must also preserve order as the initial segments
are initial segments of each other and thus the order isomorphisms are extensions of each other. Let α ∈ αx ∈ αm, let
ψ : Ix → αx be an order isomorphism. It follows that ψ|I(α)ψ−1 is an order isomorphism between α and an initial segment

of S, so α ∈ αm. We now have that αm is a transitive set of ordinals and is thus an ordinal. In addition φ is an order
isomorphism from Im to αm so we have contradicted the definition of Im.
We now have that all initial segments of S are order isomorphic to an ordinal. Therefore we can apply the same reasoning
we did to Im to conclude that S is order isomorphic to an ordinal as required.

By the previous two theorems we now have that for every set, there exists an ordinal in bijective correspandance with
it. Thus we may now safely assign cardinals to any set. If S is a set we will use the notation |S| to denote its cardinality
(the unique cardinal in bijective correspondence with it). For cardinals α and β, we now define the standard cardinal
operations.

α+ β := |α t β|, αβ := |α× β|, αβ := |αβ |.

Theorem 1.3.4. If Ω is an infinite set, then |Ω| = 2|Ω|.

Proof. Without loss of generality we may assume that Ω is a cardinal. Let φ : Ω→ Ω t Ω be defined by

(x)φ =

{
(α+ (k/2), 0) if x = α+ k for a limit ordinal α and k ∈ ℵ0 even
(α+ ((k − 1)/2), 1) if x = α+ k for a limit ordinal α and k ∈ ℵ0 odd

}
.

We have that φ is a bijection and therefore |Ω| = |Ω t Ω| = 2|Ω|.

Corollary 1.3.5. If Ω is an infinite set, then it has moiety subsets.

Theorem 1.3.6. If Ω is an infinite set, then |Ω| = |Ω|2.

Proof. Without loss of generality we can assume Ω is a cardinal. Let Ωo := {(S, φ) : S ⊆ Ω is infinite, φ : S →
S × S is a bijection}. Let Ωo be partially ordered by: (S1, φ1) ≤ (S2, φ2) ⇐⇒ S1 ⊆ S2 and φ2|S1

= φ1. Note that Ωo is
non-empty as there is a bijection from ℵ0 to ℵ0 × ℵ0.
Let ((Si, φi))i∈I be a chain, where I is an index set. Let φU : ∪i∈ISi → ∪i∈ISi × ∪i∈ISi be defined by

(x)φU = (x)φi for x ∈ Si.

This is a well-defined bijection as the bijections agree whenever they are defined. Therefore (
⋃
i∈I Si, φU ) is an upper

bound for our chain.
By Zorn’s Lemma, Ωo has a maximal element (X,φx). If |X| = |Ω| then we are done as there are bijections from Ω to X
and Ω×Ω to X ×X. Suppose for a contradiction that |X| < |Ω|. It follows that |X| < |Xc| and so there exists X ′ ⊆ Xc

such that

|X| = |X ′| = |X ′ ×X ′| = 3|X ′ ×X ′| = |X ′ ×X ′|+ |X ′ ×X|+ |X ×X ′| = |(X ′ ×X ′) ∪ (X ′ ×X) ∪ (X ×X ′)|.

Let φ′x : X ′ → (X ′ ×X ′) ∪ (X ′ ×X) ∪ (X ×X ′) be a bijection. By adjoining the functions φx and φ′x we can construct a
bijection φ′′x : X ∪X ′ → (X ∪X ′)× (X ∪X ′). We therefore have that (X,φx) < (X ∪X ′, φ′′x) a contradiction.
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Theorem 1.3.7. An infinite symmetric group Sym(Ω) has cardinality 2|Ω|.

Proof. Let S be a subset of Ω. If S is finite, then there exists a bijection φ : S → {0, 1, 2, . . . (n − 1)} for some n ∈ N0.
We can construct a bijection fS : Ω→ Ω as follows:

(x)fS =

{
((x)φ+ 1 mod n)φ−1 x ∈ S
x otherwise

}
.

If S is infinite then we can construct a partition {M1,M2} of S such that M1,M2 are moieties of S. There exists a
bijection φ : M1 →M2 so we can construct a bijection fS : Ω→ Ω as follows:

(x)fS =

 (x)φ x ∈M1

(x)φ−1 x ∈M2

x otherwise

 .

For |S| ≥ 2 we have supp(fS) = S and therefore the fS are all distinct.

2|Ω| = 2|Ω| − |Ω| = |P (Ω)\{{∅} ∪ {{x} : x ∈ Ω}}| ≤ |Sym(Ω)| ≤ |ΩΩ| ≤ |(2|Ω|)|Ω|| = |2|Ω×Ω|| = 2|Ω|.

Therefore we have that |Sym(Ω)| = 2|Ω|.

1.4 Ultrafilters

In this section we will prove various facts about ultrafilters which will be needed in the first section of chapter 4.

Definition 1.4.1 Given a set Ω, a filter on Ω is defined to be a collection of subsets F of Ω satisfying:

1. We have Ω ∈ F ,

2. For all A,B ∈ F we have A ∩B ∈ F ,

3. If A ⊆ B ⊆ Ω and A ∈ F then B ∈ F .

Example 1.4.2 If Ω is a set then the following are filters on Ω.

1. The set {Ω}.

2. The set P (Ω).

3. The set {X ⊆ Ω : |Ω\X| < κ}, where κ is any infinite cardinal.

4. The set {X ⊆ Ω : S ⊆ X}, where S is any subset of Ω.

Definition 1.4.3 Given a set Ω, an ultrafilter on Ω is defined to be a filter U on Ω satisfying:

1. The empty set is not an element of U ,

2. There is no filter U ′ such that U ⊂ U ′ ⊂ P (Ω).

Example 1.4.4 If Ω is a set and x ∈ Ω then {X ⊆ Ω : x ∈ X} is an ultrafilter on Ω.

Theorem 1.4.5. Let Ω be a set, let S ⊆ Ω and let U be an ultrafilter on Ω. Then precisely one of S and Sc is in U .

Proof. If we had that both S and Sc were in U then S ∩ Sc = ∅ would also be in U , a contradiction. Suppose for a
contradiction that neither S nor Sc are in U . Let V be defined as follows:

V := {V ⊆ Ω : V ⊇ S ∩ U for some U ∈ U}

We will now show that V is a filter, contradicting condition 2 for ultrafilters.

1. As U is a filter, we have Ω ∈ U and therefore as Ω ⊇ Ω ∩ S it follows that Ω ∈ V.

2. If A ⊇ A′ ∩ S for some A′ ∈ U and B ⊇ B′ ∩ S for some B′ ∈ U , then A ∩ B ⊇ A′ ∩ B′ ∩ S and as A′ ∩ B′ ∈ U it
follows that A ∩B ∈ V.

3. If B ⊇ A for some A ∈ V then A ⊇ A′ ∩ S for some A′ ∈ U . We have that B ⊇ A′ ∩ S as well and therefore B ∈ V.
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We therefore have that V is a filter. We have that S ⊇ Ω ∩ S so S ∈ V. In addition for all U ∈ U we have U ⊇ U ∩ S. So
U ⊂ V.
It now suffices to show that V ⊂ P (Ω). Suppose for a contradiction that V = P (Ω). It follows that ∅ ∈ V and so ∅ ⊇ U ∩S
for some U ∈ U . We therefore have that ∅ = U ∩ S and so U ⊆ Sc and Sc ∈ U , a contradiction.

Theorem 1.4.6. Ultrafilters on an infinite set Ω, which have the same moiety elements are equal.

Proof. Let U1 and U2 be ultrafilters with the same moiety elements and let U ∈ U1. If U is the superset of some moiety
then U is also in U2. If not then |Ω\U | = |Ω| and we can therefore construct disjoint moieties M1 and M2 such that
M1 ∪M2 = Ω\U . It therefore follows that M1 ∪ U and M2 ∪ U are moieties and elements of U1. So we also have that
M1 ∪ U and M2 ∪ U are elements of U2 and therefore their intersection U is in U2. We therefore have that U1 ⊆ U2 and
by symmetry U2 ⊆ U1, so U1 = U2 as required.

Definition 1.4.7 We say that a set S has the finite intersection property if for all finite non-empty subsets {s1, s2 . . . sn}
of S, we have s1 ∩ s2 ∩ s3 . . . sn 6= ∅.

Theorem 1.4.8 (Ultrafilter Lemma). Let Ω be a set and let S be a non-empty collection of subsets of Ω with the finite
intersection property. Then there is an ultrafilter U on Ω such that S ⊆ U .

Proof. The following proof is based on the proof of Theorem 1.8 in [8].
Let S ⊆ P (Ω) be a non-empty set with the finite intersection property. Let F (S) denote the set of all filters which contain
S and do not have the empty set as an element. The set F (S) is partially ordered by ⊆. If F (S) has a maximal element
then this element must be an ultrafilter, therefore by Zorn’s Lemma it suffices to show that every chain of F (S) has an
upper bound.
Consider the set V0 := {U ⊆ Ω : U ⊇ (s1 ∩ s2 ∩ s3 . . . ∩ sn) for some s1, s2 . . . sn ∈ S}.

1. We have Ω ∈ V0 as S is non-empty and all elements of S are subsets of Ω.

2. If A,B ∈ V0 then A ⊇ (s1 ∩ s2 . . . ∩ sn) and B ⊆ (sn+1 ∩ sn+2 . . . ∩ sm) for some s1, s2 . . . sm ∈ S. It follows that
A ∩B ⊇ (s1 ∩ s2 . . . ∩ sm) and thus A ∩B ∈ V0.

3. If A ∈ V0 and A ⊆ B ⊆ Ω, then A ⊇ (s1 ∩ s2 . . . ∩ sn) for some s1, s2 . . . sn ∈ S. Thus B ⊇ (s1 ∩ s2 . . . ∩ sn) so
B ∈ V0.

We therefore have that V0 is a filter. By definition S ⊆ V0. As S has the finite intersection property it follows that ∅ /∈ V0.
We now have V0 ∈ F (S), so V0 is an upper bound for the empty chain.
Let (Fi)i∈I be a non-empty chain of F (S), where I is an index set. Consider the set V1 :=

⋃
i<α Fi.

1. As the non-empty union of filters Ω ∈ V1.

2. Let U1, U2 ∈ V1, then U1 ∈ Fi1 for some i1 and U2 ∈ Fi2 for some i2 and therefore U1, U2 ∈ max{Fi1 , Fi2}. So
U1 ∩ U2 ∈ max{Fi1 , Fi2} ⊆ V1.

3. Let U1 ∈ V1 and let U2 ⊇ U1, then U1 ∈ Fi for some i and therefore U2 ∈ Fi so we have U2 ∈ V1.

It follows that V1 is a filter. As a non-empty union of elements of F (S) we have also that S ⊆ V1 and ∅ /∈ V1 so we have
V1 ∈ F (S). By construction V1 ⊇ Fi for all i ∈ I and thus is an upper bound as required.

Definition 1.4.9 Let Ω and S be sets and L ⊆ SΩ. We say that L has large oscillation if the following condition
is satisfied: If n ∈ N and {f1, f2 . . . fn} ⊆ L are distinct and {s1, s2, s3 . . . sn} ⊆ S then there exists ω ∈ Ω such that
(ω)fi = si for all i < n.

Theorem 1.4.10. Let Ω be an infinite set. Then there exists L ⊆ {0, 1}Ω such that |L| = 2|Ω| and L has large oscillation.

Proof. The following proof is based on the proof of Theorem 2.2 in [8].
Let Ω′ be defined by

Ω′ := {(s, S, φ) : s ⊆ |Ω| is finite, S ⊆ P (s), φ ∈ {0, 1}S}.

As s is finite we have that P (P (s)) is finite, S is finite and {0, 1}S is finite. It follows that |Ω′| = |Ω| as we have |Ω| choices
for s and finitely many choices for S and φ. We may therefore assume without loss of generality that Ω = Ω′ as |Ω| = |Ω′|
and Ω′′ would give the exact same set as Ω′.
Let f : P (|Ω|)→ {0, 1}Ω be defined by (Σ)f = fΣ where fΣ : Ω→ {0, 1} is defined by

(s, S, φ)fΣ =

{
(Σ ∩ s)φ Σ ∩ s ∈ S
0 Σ ∩ s /∈ S

}
.
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Let L := img(f). To show that |L| = 2|Ω| it suffices to show that f is injective as |P (Ω)| = 2|Ω|. Let Σ1,Σ2 ∈ P (|Ω|)
be distinct. Without loss of generality we have Σ1\Σ2 6= ∅. Let x ∈ Σ1\Σ2. Let s := {x}, S := {s} and φ be such that
(s)φ = 1 then

(s, S, φ)fΣ1 = (Σ1 ∩ s)φ = (s)φ = 1 6= 0 = (∅)φ = (s ∩ Σ2)φ = (s, S, φ)fΣ2 .

It follows that (Σ1)f 6= (Σ2)f and thus f is injective.
It remains to show that L has large oscillation. Let n ∈ N, {fAm : m < n} ⊆ L be distinct and {km : m < n} ⊆ {0, 1}.
For each (m1,m2) such that m1 < m2 < n let am1,m2 ∈ Am14Am2 .
Let s := {am1,m2

: m1 < m2 < n}, S := {Am ∩ s : m < n} and let φ : S → {0, 1} be defined by (Am ∩ s)φ = km.
To see that φ is well-defined (that no elements of S can be represented as above in two ways) observe that if Am1

6= Am2

then am1,m2
∈ Am1

4Am2
and so is in precisely one of s ∩Am1

and s ∩Am2
.

We have that (s, S, φ) ∈ Ω and for all m < n we have (s, S, φ)fAm = (s ∩Am)φ = km as required.

Theorem 1.4.11. For all infinite sets Ω there are 22|Ω| ultrafilters on Ω.

Proof. The following proof is based on the proof of Theorem 2.5 in [8].
Let Ω be an infinite set. We have that any ultrafilter on Ω is an element of P (P (Ω)) and therefore there are at most

|P (P (Ω))| = 22|Ω| of them. To show there are at least 22|Ω| we will construct such a family of ultrafilters.
By Theorem 1.4.10 let L ⊆ {0, 1}Ω be a family of large oscillation such that |L| = 2|Ω|. For S ∈ P (L) we define B(S) by

B(S) := {({0})f−1 : f ∈ S} ∪ {({1})f−1 : f ∈ Sc},

where f−1 is used to denote preimage. Let B1, B2 . . . Bk ∈ B(S) then it follows that for i ∈ {1, 2, . . . k} we have
Bi = (bi)f

−1
i for some f1, f2 . . . fk ∈ L and b1, b2 . . . bk ∈ {0, 1}. As L has large oscillation it follows that for some ω ∈ Ω,

(ω)fi = bi for all i ∈ {1, 2 . . . k}, and therefore ω ∈
⋂
i∈{1,2,...k}Bi. Therefore B(S) has the finite intersection property.

By the Ultrafilter Lemma we have that for every S ∈ P (L) we can extend B(S) to an ultrafilter U(S).
Suppose for a contradiction that there exist distinct S1, S2,∈ P (L) such that U(S1) = U(S2). Then without loss of
generality there exists f ∈ S1\S2. We have that ({0})f−1 ∈ U(S1) is the complement of ({1})f−1 ∈ U(S2). So because
U(S1) = U(S2) we have that ({0})f−1 ∩ ({1})f−1 = ∅ ∈ U(S1), a contradiction. It follows that U(S) for S ∈ P (L) are

distinct ultrafilters and there is |P (L)| = 22|Ω| of them as required.

This theorem gives an interesting corollary, that for any infinite set Ω, there are 22|Ω| topologies on Ω. This follows as
filters can be extended to topologies by adding the empty set.
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Chapter 2

Topological Groups and Commutators

In this chapter we will be primarily focusing on Sym(N). We will be viewing this group as a topological group and will
use its topological properties to show that all its elements can be written as commutators. We will then generalise this
property to all infinite symmetric groups.

2.1 Infinite Permutations

Theorem 2.1.1. If Ω is an infinite set and f, g ∈ Sym(Ω), then f and g are conjugate if and only if they have the same
disjoint cycle shape.

Proof. (⇐) Let Cf,i be the set of i-cycles of f and similarly Cg,i be the set of i-cycles of g. We have that |Cf,i| = |Cg,i|
for all i ∈ N0 ∪ {ℵ0}. Label their elements such that

Cf,i = {Cf,i,j : j ∈ |Cf,i|}, Cg,i = {Cg,i,j : j ∈ |Cg,i|}.

Let Cf,i,j := (Cf,i,j,0, Cf,i,j,1, . . . Cf,i,j,i−1) if i 6= ℵ0 and Cf,i,j = (. . . Cf,i,j,−1, Cf,i,j,0, Cf,i,j,1 . . .) otherwise. Similarly
let Cg,i,j := (Cg,i,j,0, Cg,i,j,1 . . . Cg,i,j,i−1) if i 6= ℵ0 and Cg,i,j = (. . . Cg,i,j,−1, Cg,i,j,0, Cg,i,j,1 . . .) otherwise. Note that the
domains of the disjoint cycles of f or g partition Ω. We can therefore define a bijection h : Ω→ Ω by (Cf,i,j,k)h = (Cg,i,j,k).
We now have that f = hgh−1 as required.
(⇒) Suppose that h−1gh = f for some h ∈ Sym(Ω). Let Cf := (. . . c−1, c0, c1 . . .) be a cycle of f , we have h−1Cfh =
(. . . (c−1)h, (c0)h, (c1)h . . .). Similarly if Cf = (c1 . . . ck) is a cycle of f . we have h−1Cfh = ((c1)h, (c2)h . . . (ck)h).
We therefore have that all disjoint cycles in f have a unique corresponding cycle in g and therefore g has the same number
of cycles of each length as f and so g has the same disjoint cycle shape as f .

The desired result for this chapter will take some time to prove, however there is a similar weaker result which can be
shown with relatively little effort. In addition this proof gives us a way to construct the elements that we are commutating.

Theorem 2.1.2. If f ∈ Sym(N0) and f has finite support, then f can be written in the form

f = [g, h] = g−1h−1gh

where g, h ∈ Sym(N0).

Proof. As f has finite support we have that there exists k ∈ N0 such that (i)f = i for all i ≥ k. For n ∈ N0 we define
qn ∈ N0 and rn ∈ {0, 1 . . . 2k − 1} by the expression n = 2kqn + rn (quotient and remainder when dividing by 2k).
Let g, h ∈ Sym(N0) be defined as follows:

(n)g =

{
2qnk + (rn)f−1 rn < k
n otherwise

}
, (n)h =

 n− k k ≤ n < 2k
n+ 2k rn < k
n− 2k rn ≥ k and qn > 0

 .

Note that g, h have the following inverses and are therefore bijections:

(n)g−1 =

{
2qnk + (rn)f rn < k
n otherwise

}
, (n)h−1 =

 n+ k n < k
n− 2k rn < k and qn > 0
n+ 2k rn ≥ k

 .

We now show that f = [g, h].
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Case 1: n < k

(n)[g, h] = ((((n)g−1)h−1)g)h

= ((((rn)g−1)h−1)g)h

= (((rn)f + k)g)h

= ((rn)f + k)h

= (rn)f = (n)f.

Case 2: qn > 0 and rn < k

(n)[g, h] = ((((n)g−1)h−1)g)h

= ((((2qnk + rn)g−1)h−1)g)h

= (((2qnk + (rn)f)h−1)g)h

= ((2(qn − 1)k + (rn)f)g)h

= 2qnk + rn = n = (n)f.

Case 3: k ≤ rn
(n)[g, h] = ((((n)g−1)h−1)g)h

= (((n)h−1)g)h

= ((n+ 2k)g)h

= (n+ 2k)h

= n = (n)f.

2.2 Constructing a Topology on an Infinite Symmetric Group

In this section we will be constructing a completely metrisable topology on Sym(N), by first constructing one on the full
transformation monoid and then considering the subspace topology. In doing this we will use the more general results
concerning topologies and metric spaces given in the previous chapter.

Definition 2.2.1 The countably infinite product of the discrete topology on N will be denoted by T . This topology is
defined on the set NN. The following notations will also be used:

N<N := {σ : {1, 2 . . . n} → N : n ∈ N}, [σ] := {f ∈ NN : f |dom(σ) = σ}, B := {[σ] : σ ∈ N<N}.

Theorem 2.2.2. The set B above is a basis for T .

Proof. We have that Bo := {U1 × U2 . . . × Uk × N × N × . . . : k ∈ N, Ui ⊆ N for all i ∈ {1, 2 . . . k}} is a basis for T by
the definition of an infinite product topology.
As B ⊆ Bo it suffices to show that for all U ∈ Bo there exists GU ⊆ B such that U = ∪GU . Let U be given by

U = U1 × U2 . . .× Uk × N× N× . . .

Let GU := {[σ] ∈ B : dom(σ) = {1, 2 . . . k} and for all i ∈ dom(σ) we have (i)σ ∈ Ui}. We now show that U = ∪GU .
(⊆) Let f ∈ U . We have that (i)f ∈ Ui for all i ∈ {1, 2 . . . k}. So if we let σf := f |{1,2...k} ∈ N<N, we have that
f ∈ [σf ] ∈ GU so f ∈ ∪GU .
(⊇) Let f ∈ ∪GU . There exists [σf ] ∈ GU such that f ∈ [σf ]. It follows that (i)f = (i)σf ∈ Ui for all i ∈ {1, 2 . . . k} so
f ∈ U .

Theorem 2.2.3. If d : NN × NN → R is defined by

d(f, g) =

{
0 f = g

1
min{i∈N:(i)f 6=(i)g} f 6= g

}
then the tuple (NN, d) is a complete metric space which induces the topology T , and thus T is completely metrisable.

Proof. We first show that d is a metric. The non-negativity, identity of indiscernibles and symmetry conditions follow
immediately from the definition.
Triangle inequality: Let f, g, h ∈ NN. First notice that if j = min{i ∈ N : (i)f 6= (i)h} then either (j)f 6= (j)g or
(j)g 6= (j)h. It therefore follows that

min{i ∈ N : (i)f 6= (i)h} ≥ min{i ∈ N : (i)f 6= (i)g or (i)g 6= (i)h} = min{min{i ∈ N : (i)f 6= (i)g},min{i ∈ N : (i)g 6= (i)h}}

=⇒ 1

d(f, h)
≥ min{ 1

d(f, g)
,

1

d(g, h)
} =

1

max{d(f, g), d(g, h)}
=⇒ d(f, h) ≤ max{d(f, g), d(g, h)} ≤ d(f, g) + d(g, h).

We next show that (NN, d) is complete.
Let S := (f1, f2, f3 . . .) be a Cauchy sequence.
Claim: for all i ∈ N there is a minimal Mi ∈ N such that for all j ∈ {1, 2 . . . i} and all n ≥Mi

(j)fMi
= (j)fn.

Proof of Claim: Let i ∈ N. As S is Cauchy we have that for all ε > 0 there exists an N ∈ N such that for all n,m ≥ N we
have d(fn, fm) < ε. By choosing ε = 1

i+1 we have that for all i ∈ N, there exists Ni such that for all n,m ≥ Ni we have

d(fn, fm) < 1
i+1 . It follows that d(fNi , fn) < 1

i+1 for all n ≥ Ni, and so (j)fNi = (j)fn for all n ≥ Ni and j ∈ {1, 2 . . . i}.
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As there exists a natural number Ni with the desired property and the natural numbers are well ordered there must exist
a minimal such number Mi with this property.

Define l : N → N by (i)l = (i)fMi
. It suffices to show that S converges to l. We have from the definition of Mi that

for all i ∈ N we have Mi ≤Mi+1. For all i ∈ N we have Mi ≤Mi+1, so for all i ∈ N we have (i)fMi+1 = (i)fMi . It follows
that for all j > i we have (i)fMi = (i)fMj .
For all n ≥Mi and all j ∈ {1, 2 . . . i} we have (j)l = (j)fMj

= (j)fMi
= (j)fn and therefore d(l, fn) < 1

i .
We have just shown that for all i ∈ N there exists Mi ∈ N such that for all n ≥ Mi we have d(l, fn) < 1

i , so S
converges to l as required. Finally we show that T is induced by d. By definition, the topology induced by d is given by
〈{{g ∈ NN : d(g, f) < ε} : f ∈ NN, ε > 0}〉T . We have that

〈{{g ∈ NN : d(g, f) < ε} : f ∈ NN, ε > 0}〉T = 〈{{g ∈ NN : (i)g = (i)f for all i ∈ {1, 2 . . . (d1
ε
e − 1)}} : f ∈ NN, ε > 0}〉T

= 〈{{g ∈ NN : (j)g = (j)f for all j ∈ {1, 2 . . . i}} : f ∈ NN, i ∈ N}〉T
= 〈{{g ∈ NN : (j)g = (j)σ for all j ∈ dom(σ)} : σ ∈ N<N}〉T
= 〈{{g ∈ NN : g|dom(σ) = σ} : σ ∈ N<N}〉T
= 〈{[σ] : σ ∈ N<N}〉T = T .

Theorem 2.2.4. The infinite symmetric group Sym(N) is a Gδ subset of (NN,T ).

Proof. Let I denote the set of all injective functions from N to N. We have that

I =
⋂
i6=j

{g ∈ NN : (i)g 6= (j)g}.

We now show that for all i 6= j we have {g ∈ NN : (i)g 6= (j)g} is open. Let i, j ∈ N be such that i 6= j, and
let g ∈ NN be such that (i)g 6= (j)g. For h ∈ B(g, 1

i+j ) we have that (i)h = (i)g 6= (j)g = (j)h. It follows that

B(g, 1
i+j ) ⊆ {g ∈ NN : (i)g 6= (j)g}. As g was arbitrary it follows that {g ∈ NN : (i)g 6= (j)g} is open.

Let S denote the set of all surjective functions from N to N. We have that

S =
⋂
k∈N
{g ∈ NN : k ∈ img(g)}.

We now show that for all k ∈ N, the set {g ∈ NN : k ∈ img(g)} is open. Let k ∈ N and let g be such that k ∈ img(g). Let
kg ∈ N be such that (kg)g = k. It follows that for h ∈ B(g, 1

kg+7 ), we have (kg)h = (kg)g = k and thus h ∈ {g ∈ NN : k ∈
img(g)}. Therefore B(g, 1

kg+7 ) ⊆ {g ∈ NN : k ∈ img(g)}. As g was arbitrary it follows that {g ∈ NN : k ∈ img(g)} is open.

We now have S and I as a countable intersection of open sets. It follows that Sym(N) = I ∩ S is a countable intersection
of open sets as required.

Theorem 2.2.5. Let Ts be the subspace topology of Sym(N) in (NN,T ). The topological space (Sym(N),Ts) is completely
metrisable.

Proof. By Theorems 1.1.1, 2.2.4 and 1.1.4 we have that (NN,T ) is completely metrisable, Sym(N) is Gδ in (NN,T ) and
Gδ sets of a completely metrisable topology equipped with the subspace topology are completely metrisable. It therefore
follows that (Sym(N),Ts) is completely metrisable.

Theorem 2.2.6. The triple (Sym(N), ◦,Ts) is a topological group (where ◦ represents composition of functions).

Proof. For σ ∈ N<N let [σ]s := {f ∈ Sym(N) : f |dom(σ) = σ}. As B is a basis for T we have that Bs := {b∩ Sym(N) : b ∈
B} = {[σ]s : σ ∈ N<N} is a basis for Ts. Let φi : Sym(N) → Sym(N) be defined by (f)φi = f−1. If suffices to show that
(b)◦−1 and (b)φ−1

i = (b)φi are open for all b ∈ Bs.
Let b = [σ]s ∈ Bs and let dom(σ) := {1, 2 . . . k}. We have

(f, g) ∈ (b)◦−1 =⇒ fg ∈ b = [σ]s =⇒ ((i)f)g = (i)σ for all i ∈ {1, 2 . . . k}.

Let Uf,g := [f |{1,2...k}]s × [g|{1,2...max{(i)f :i∈{1,2...k}}}]s. We have that (f, g) ∈ Uf,g and Uf,g is open.
Let (f2, g2) ∈ Uf,g.

((i)f2)g2 = ((i)f)g2 for all i ∈ {1, 2 . . . k} (as f2|{1,2...k} = f |{1,2...k})
=⇒ ((i)f2)g2 = ((i)f)g for all i ∈ {1, 2 . . . k} (as g2|{1,2...max{(i)f :i∈{1,2...k}}} = g|{1,2...max{(i)f :i∈{1,2...k}}})

=⇒ ((i)f2)g2 = (i)σ for all i ∈ {1, 2 . . . k} = dom(σ)

=⇒ (f2, g2) ∈ ([σ]s)◦−1 = (b) ◦−1 .
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So we have that for all (f, g) ∈ (b)◦−1 there is an open set Uf,g such that (f, g) ∈ Uf,g ⊆ (b)◦−1 and therefore (b)◦−1 is
open and ◦ is continuous.

f ∈ (b)φi =⇒ f−1 ∈ [σ]s =⇒ (i)f−1 = (i)σ for all i ∈ {1, 2 . . . k} =⇒ i = ((i)σ)f for all i ∈ {1, 2 . . . k}.

Let Uf := [f |{1,2...max(img(σ))}]s. We have that f ∈ Uf and Uf is open. It therefore suffices to show that Uf ⊆ (b)φi. Let
f2 ∈ Uf .

((i)σ)f2 = ((i)σ)f for all i ∈ {1, 2 . . . k} (as f2|{1,2...max(img(σ))} = f |{1,2...max(img(σ))})

=⇒ ((i)σ)f2 = i for all i ∈ {1, 2 . . . k}
=⇒ (i)σ = (i)f−1

2 for all i ∈ {1, 2 . . . k}
=⇒ f−1

2 ∈ [σ]s =⇒ (f−1
2 )φi ∈ ([σ]s)φi = (b)φi =⇒ f2 ∈ (b)φi.

2.3 Comeagre Conjugacy Class

For the rest of this chapter we will construct a comeagre conjugacy class of Sym(N) and use it, with the Baire Catagory
Theorem, to show the desired result that all elements of Sym(N) are commutators.

Definition 2.3.1 Let the conjugacy class C be defined by

C := {f ∈ Sym(N) : f has infinitely many cycles of every finite length but has no cycles of infinite length}.

Note that this actually is a conjugacy class by Theorem 2.1.1.

Theorem 2.3.2. Let I := (i1, i2, . . . ik) and N := (n1, n2, . . . nk) be finite sequences of natural numbers with no repeats.
There exists σ ∈ Sym(N) and r > 0 such that (nj)f = ij for all f ∈ B(σ, r) and for all j ∈ {1, 2 . . . k}.

Proof. As both I and N are finite, we have that |N\I| = |N| = |N\N |. Therefore there exists a bijection φ : N\N → N\I.
Let σ : N→ N be given by

(n)σ =

{
ij if n = nj for some j ∈ {1, 2, . . . k}
(n)φ otherwise

}
.

By construction σ ∈ Sym(N). Let r := 1
max(N) and f ∈ B(σ, r).

d(σ, f) <
1

max(N)
=⇒ 1

min({n ∈ N : (n)σ 6= (n)f})
<

1

max(N)

=⇒ max(N) < min({n ∈ N : (n)σ 6= (n)f})
=⇒ (nj)f = (nj)σ for all j ∈ {1, 2, . . . k}
=⇒ (nj)f = ij for all j ∈ {1, 2, . . . k}.

Theorem 2.3.3. The sets C1,i defined by

C1,i = {f ∈ Sym(N) : f has a cycle of infinite length with i in its domain}

are nowhere dense for all i ∈ N

Proof. Let i ∈ N, g ∈ Sym(N), r1 > 0 and gr := g|{1,2...(d 1
r1
e−1)}. We have B(g, r1) = {f ∈ Sym(N) : f |{1,2...(d 1

r1
e−1)} =

gr}.
By Theorem 1.1.6 it suffices to find σ ∈ Sym(N) and r > 0 such that B(σ, r) ⊆ B(g, r1)\C1,i.

m1 := min{j ∈ N0 : (i)gj /∈ dom(gr)}, m2 := min{j ∈ N0 : (i)g−j /∈ img(gr)}.

Note that if m1 and m2 don’t exist then B(g, r1) ⊆ B(g, r1)\C1,i and we are done.
By Theorem 2.3.2 let σ be a bijection satisfying

(j)σ = (j)g for all j ∈ dom(gr), ((i)gm1)σ = (i)g−m2

and let r > 0 be such that for all f ∈ B(σ, r) we have

(j)σ = (j)f for all j ∈ dom(gr), ((i)gm1)σ = ((i)gm1)f.

We now have that | orb{f}(i)| ≤ m1 + m2 < ∞ for all f ∈ B(σ, r), and therefore f /∈ C1,i. So B(σ, r) ⊆ B(g, r1)\C1,i as
required.
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Theorem 2.3.4. The sets C2,i,j defined by

C2,i,j = {f ∈ Sym(N) : f has i cycles of length j}

are nowhere dense for all i ∈ N0 and j ∈ N.

Proof. Let i ∈ N0 and j ∈ N. Let g ∈ Sym(N), r1 > 0 and gr := g|{1,2...(d 1
r1
e−1)}. We have B(g, r1) = {f ∈ Sym(N) :

f |{1,2...(d 1
r1
e−1)} = gr}. By Theorem 1.1.6 it suffices to find σ ∈ Sym(N) and r > 0 such that B(σ, r) ⊆ B(g, r1)\C2,i,j .

Let m := max(dom(gr) ∪ img(gr)) + 1. By Theorem 2.3.2 let σ ∈ Sym(N) be such that

(k)σ = (k)g for all k ∈ dom(gr)

(m+ 1)σ = (m+ 2), (m+ 2)σ = (m+ 3) . . . (m+ j)σ = (m+ 1),

(m+ j + 1)σ = (m+ j + 2) . . . , (m+ 2j)σ = (m+ j + 1),

(m+ 2j + 1)σ = (m+ 2j + 2) . . . , (m+ 3j)σ = (m+ 2j + 1),

...

(m+ ij + 1)σ = (m+ ij + 2) . . . (m+ (i+ 1)j)σ = (m+ ij + 1)

and let r > 0 be such that for all f ∈ B(σ, r) we have

(k)f = (k)σ for all k ∈ {1, 2 . . . (m+ (i+ 1)j)}.

All f ∈ B(σ, r) have at least (i + 1) cycles of length j and therefore f /∈ C2,i,j . However B(σ, r) ⊆ B(x1, r1) so we have
B(σ, r) ⊆ B(x1, r1)\C2,i,j as required.

Theorem 2.3.5. The conjugacy class C is comeagre.

Proof. Let C1 and C2 be defined by:

C1 := {f ∈ Sym(N) : f has a cycle of infinite length}, C2 := {f ∈ Sym(N) : f has finitly many cycles of some finite length }.

Let C2,i be defined by
C2,i := {f ∈ Sym(N) : f has i cycles of some finite length }.

Notice that we now have the following equalities:

Cc = C1 ∪ C2, C1 =
⋃
i∈N

C1,i, C2 =
⋃
i∈N0

C2,i, C2,i =
⋃
j∈N

C2,i,j .

We therefore have that

Cc = C1 ∪ C2 =
( ⋃
i∈N

C1,i

)
∪
( ⋃
i∈N0

C2,i

)
=
( ⋃
i∈N

C1,i

)
∪
( ⋃
i∈N0

( ⋃
j∈N

C2,i,j

))
.

By Theorems 2.3.3 and 2.3.4 we have that all the C1,i and C2,i,j are nowhere dense. Thus Cc is a countable union of
nowhere dense sets and is therefore meagre.

Theorem 2.3.6. We have CC = Sym(N) and in particular all functions f ∈ Sym(N) can be written in the form

f = [g, h] = g−1h−1gh

where g, h ∈ Sym(N).

Proof. Let f ∈ Sym(N). By Theorems 2.3.5 and 1.1.9, we have that C is comeagre, and right multiplication by f is a
homeomorphism. As homomorphisms preserve closures, interiors and unions it follows that (C)f is comeagre. Therefore
there exist nowhere dense sets (N1,i)i∈N and (N2,i)i∈N such that Cc = ∪i∈NN1,i and ((C)f)c = ∪i∈NN2,i. It follows that
((C)f ∩C)c = ∪i∈N(N1,i ∪N2,i) and so (C)f ∩C is comeagre. So by the Baire Catagory Theorem we have C ∩ (C)f 6= ∅.
For x ∈ C ∩ (C)f , there exist f1, f2 ∈ C such that f1 = x = f2f . It follows that f = f−1

2 f1. We have that C is closed
under taking inverses as the disjoint cycles of the inverse of a permutation are the same but reversed.
It therefore follows that f−1

2 is conjugate to f2, so f−1
2 ∈ C. Therefore we have that f = f−1

2 f1 ∈ CC.
As f1, f2 ∈ C we have that there exists h ∈ Sym(N) such that f1 = h−1f2h. Let g := f2, we now have

[g, h] = g−1h−1gh = f−1
2 h−1f2h = f−1

2 f1 = f.
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We now have that every element of Sym(N) is a commutator. It remains to show for any infinite set Ω that any element
of Sym(Ω) can be written as a commutator.

Theorem 2.3.7. Let Ω be an infinite set. Then all functions f ∈ Sym(Ω) can be written in the form:

f = [g, h] = g−1h−1gh

where g, h ∈ Sym(Ω). In addition the conjugacy class

CΩ := {f ∈ Sym(Ω) : f has |Ω| cycles of every finite length and no cycles of infinite length}

satisfies CΩCΩ = Sym(Ω).

Proof. If |Ω| = ℵ0 then we are done by Theorem 2.3.6. Otherwise let f ∈ Sym(Ω). For any point p ∈ Ω we have that
| orb{f}(p)| is countable. Let P1 be the partition of Ω into the orbits of points under f . We must have that |P1| = |Ω| as
if |P1| > |Ω| we would have that | ∪ P1| > |Ω| = | ∪ P1|, and if |P1| < |Ω| then | ∪ P1| ≤ |P1| × ℵ0 ≤ max{|P1|2,ℵ0} =
max{|P1|,ℵ0} < |Ω| = | ∪ P1|. We can therefore index P1 as P1 = {Si : i ∈ |Ω|}. Define an equivalence relation by
Si ∼ Sj ⇐⇒ i = α+ a and j = α+ b for some a, b ∈ N0 and limit ordinal α.
Let P2 be the partition of P1 into equivalence classes by this relation. For the same reasons as P1 we have that |P2| = |Ω|.
Let P := {∪x : x ∈ P2}. We therefore have that P = {Pi : i ∈ |Ω|} is a partition of Ω into countably infinite sets such
that for all p ∈ Ω we have that p ∈ Pi ⇐⇒ (p)f ∈ Pi. We can therefore consider f as an element of

∏
i∈|Ω| Sym(Pi). As

each Pi is countably infinite it follows from Theorem 2.3.6 that, for all i ∈ |Ω|, the permutation f |Pi can be written as
f1if2i for some f1i, f2i ∈ Sym(Pi) with infinitely many cycles of all finite lengths and none of infinite length. From these
we can define f1, f2 by:

(p)f1 := (p)f1i were i is the index of the unique Pi containing p,

(p)f2 := (p)f2i were i is the index of the unique Pi containing p.

We have that f |Pi = f1f2|Pi for all i ∈ |Ω| and thus f1f2 = f . By the construction of f1 and f2, they have |Ω| × ℵ0 = |Ω|
cycles of all finite lengths and |Ω| × 0 = 0 cycles of infinite length so f1, f2 ∈ CΩ and f ∈ CΩCΩ. It remains to show that
f is a commutator. As f1, f2 ∈ CΩ it follows that there exists h ∈ Sym(Ω) such that h−1f−1

1 h = f2. Let g := f−1
1 . We

now have
[g, h] = g−1h−1gh = f1h

−1f−1
1 h = f1f2 = f.
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Chapter 3

Generating the Infinite Symmetric Groups

In this chapter we will look at various ways of generating infinite symmetric groups.

3.1 The Bergman Property

Definition 3.1.1 A semigroup S is said to have the Bergman Property if, for all U ⊆ S such that 〈U〉S = S, there exists
a natural number n such that

⋃n
i=1 U

i = S.

An equivalent way to view this concept is that the semigroup’s Cayley graph will always have bounded diameter. Note
that all finite semigroups have the semigroup Bergman Property. In this section we will show that given an infinite set Ω
the group Sym(Ω) has the Bergman Property. This is an unusual property among infinite semigroups.

Example 3.1.2 For S ∈ {(N,+), (Z,+), (Q,+), (R,+), (C,+), (Q\{0},×), (R\{0},×), (C\{0},×)} there exists U ⊆ S
such that 〈U〉S = S and

⋃n
i=1 U

i 6= S for all n ∈ N. So these semigroups don’t have the Bergman Property.

This can be seen by taking U to be B(0, 2) ∩ S.

Theorem 3.1.3. Let Ω be an infinite set and let {A,B,C} be a partition of Ω into moieties of Ω. Then we have

Sym(Ω) = Pstab(A) Pstab(B) Pstab(A) ∪ Pstab(B) Pstab(A) Pstab(B).

Proof. The following proof is based on the proof of Lemma 2.1 found in [3].
Let f ∈ Sym(Ω).
Case 1: |Ω| = |C\((A)f−1)|. The diagram below demonstrates the idea behind how to construct f as such a product.
The colours demonstrating where points are as the permutations are applied, and the labelled regions saying where they
originated.

As |Ω| = |C\((A)f−1)|, it follows that |Ω| = |C| = |(B ∪ C)f ∩ C| = |(B ∪ C)f ∩ (B ∪ C)|. Let {M1,M2} be a partition
of C into moieties and let M ′2 ⊆ M2 be such that |M ′2| = |(C ∪ B) ∩ Af−1|. Let b1 : (C ∪ B) ∩ Af−1 → M ′2 and
b2 : (C ∪B) ∩ (C ∪B)f−1 → (C ∪B)\M ′2 be bijections. Let φ1 : Ω→ Ω be defined by

(x)φ1 =

 x x ∈ A
(x)b1 x ∈ (C ∪B) ∩Af−1

(x)b2 x ∈ (C ∪B) ∩ (C ∪B)f−1

 .
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Let b3 : M1 ∪ (M2\M ′2) ∪ (A\Af−1) → C be a bijection (note this must exist as |C| = |M1| = |Ω|). Let φ2 : Ω → Ω be
defined by

(x)φ2 =


x x ∈ B
(x)b3 x ∈M1 ∪ (M2\M ′2) ∪ (A\Af−1)
(x)b−1

1 f x ∈M ′2
(x)f x ∈ A ∩ (Af−1)

 .

We have that φ1 ∈ Pstab(A) and φ2 ∈ Pstab(B). In addition f−1φ1φ2 is a bijection which fixes A pointwise so
f−1φ1φ2 ∈ Pstab(A). So there exists φ3 ∈ Pstab(A) such that f−1φ1φ2 = φ3. It therefore follows that f = φ1φ2φ

−1
3 ∈

Pstab(A) Pstab(B) Pstab(A) as required.
Case 2: If |Ω| = |C\((B)f−1)|, we similarly conclude that f ∈ Pstab(B) Pstab(A) Pstab(B).
As C = (C\Af−1) ∪ (C\Bf−1) and |C| = |Ω| we must be in one of these cases and thus the proof is complete.

Definition 3.1.4 A semigroup S is said to be quasi-bounded if it satisfies the following:
Every function ψ : S → N such that there is some constant Cψ ∈ N satisfying

(st)ψ ≤ (s)ψ + (t)ψ + Cψ for all s, t ∈ S

is bounded above.

Theorem 3.1.5. Let S be a quasi-bounded semigroup. Then S also satisfies the semigroup Bergman property.

Proof. Let U ⊆ S be such that 〈U〉S = S. Define ψ : S → N by

(s)ψ = min

{
n ∈ N : s ∈

n⋃
i=1

U i

}
.

Let Cψ = 0 and let s, t ∈ S. Observe that if (s)ψ = l1 and (t)ψ = l2, then we have that s = us1us2 . . . usl1 and
t = ut1ut2 . . . utl2 for some us1 , us2 . . . usl1 , ut1 , ut2 . . . utl2 ∈ U .

Therefore st = us1us2 . . . usl1ut1ut2 . . . utl2 ∈
⋃l1+l2
i=1 U i and therefore (st)ψ ≤ l1 + l2 = (s)ψ + (t)ψ + Cψ. As S is quasi-

bounded we have that ψ is bounded by some N ∈ N and therefore (s)ψ ≤ N for all s ∈ S. This implies that s ∈
⋃N
i=1 U

i

for all s ∈ S so we have S =
⋃N
i=1 U

i. It follows that S satisfies the semigroup Bergman property.

Theorem 3.1.6. Let Ω be an infinite set. There is a sequence (an)n∈N ⊆ N and N ∈ N, such that for all S = (sn)n∈N ⊆
Sym(Ω), we can find G ⊆ Sym(Ω) such that for all n ∈ N we have sn ∈ ∪ani=1G

i and |G| = N .

Proof. The following proof is based on the proof of Theorem 3.1 found in [3].
Choose (an)n∈N = (36n+ 6)n∈N, N = 8.
Let (sn)n∈N be a sequence in Sym(Ω). Without loss of generality we assume that Ω = Z× Z× Ω′ where |Ω′| = |Ω|.
Let M be a moiety of Ω′.

Ω0 := {0} × {0} × Ω′, Ω+
0 := {(0, 0, x) : x ∈M}, Ω−0 := {(0, 0, x) : x ∈M c}.

By Theorem 3.1.3, we can build a sequence S′ = (s′n)n∈N ⊆ Pstab(Ωc0) ∪ Pstab(Ω+
0 ) such that sn = s′3n−2s

′
3n−1s

′
3n for all

n ∈ N.
Let b1 : Ωc0 → Ω+

0 be a bijection and let φ1 : Ω→ Ω, φ2 : Ω→ Ω and φ3 : Ω→ Ω be defined by:

(x)φ1 =


(x)b1 x ∈ Ωc0
(x)b−1

1 x ∈ Ω+
0

x x ∈ Ω−0

 ,
((a, b, c))φ2 = (a+ 1, b, c),

((a, b, c))φ3 =

{
(a, b+ 1, c) a = 0
(a, b, c) a 6= 0

}
.

Let the bijection b2 : Z→ N and s′′i for i ∈ Z be defined by:

(i)b2 =

{
2i i ≥ 0
2|i| − 1 i < 0

}
, s′′i =

{
s′(i)b2 s′(i)b2 ∈ Pstab(Ωc0)

φ1s
′
(i)b2

φ1 s′(i)b2 ∈ S
′\Pstab(Ωc0)

}
.

Let S′′ := {s′′i : i ∈ Z}. As S′′ stabilises Ωc0 pointwise for each s′′i we can construct ŝ′′i : Ω′ → Ω′ such that (0, 0, p)s′′i =

(0, 0, (p)ŝ′′i ) for all p ∈ Ω′ so φ4 : Ω→ Ω can be defined by

((a, b, c))φ4 =

{
(a, b, (c)ŝ′′a) b ≥ 0
(a, b, c) b < 0

}
.

Let (g1, g2, g3, g4, g5, g6, g7, g8) := (φ1, φ2, φ3, φ4, φ
−1
1 , φ−1

2 , φ−1
3 , φ−1

4 ) and let G := {g1, g2, g3, g4, g5, g6, g7, g8}. Let L(s)
denote the minimum length of s as a product of elements of G. It suffices to show that L(sn) ≤ an for all n ∈ N.
Let a, b, i ∈ Z and c ∈ Ω′. We have that:
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((a, b, c))φi2φ4φ
−i
2 = ((a+ i, b, c))φ4φ

−i
2

=

{
(a+ i, b, (c) ˆs′′a+i)φ

−i
2 b ≥ 0

(a+ i, b, c)φ−i2 b < 0

}
=

{
(a, b, (c) ˆs′′a+i) b ≥ 0
(a, b, c) b < 0

}
,

((0, b, c))φ−1
3 φi2φ

−1
4 φ−i2 φ3 = ((i, b− 1, c))φ−1

4 φ−i2 φ3

=

{
(i, b− 1, (c) ˆs′′−1

i )φ−i2 φ3 b ≥ 1

(i, b− 1, c)φ−i2 φ3 b < 1

}

=

{
(0, b, (c) ˆs′′−1

i ) b ≥ 1
(0, b, c) b < 1

}
.

It follows that

(a, b, c)φi2φ4φ
−i
2 (φ−1

3 φi2φ
−1
4 φ−i2 φ3) =


(a, b, c)φi2φ4φ

−i
2 (φi2φ

−1
4 φ−i2 φ3) a 6= 0

(a, b, c)φ−1
3 φi2φ

−1
4 φ−i2 φ3 a = 0 and b < 0

(a, b, (c) ˆs′′a+i)φ
−1
3 φi2φ

−1
4 φ−i2 φ3 a = 0 and b > 0

(a, b, (c) ˆs′′a+i)φ
−1
3 φi2φ

−1
4 φ−i2 φ3 a = b = 0


=


(a, b, c) a 6= 0
(a, b, c) a = 0 and b < 0
(a, b, c) a = 0 and b > 0

(a, b, (c) ˆs′′a+i) a = b = 0

 = s′′i .

Thus for i ≥ 0 we have s′′i = gi2g4g
i
6g7g

i
2g8g

i
6g3 so L(s′′i ) ≤ 4|i|+ 4. In addition for i < 0 we have s′′i = g

|i|
6 g4g

|i|
2 g7g

|i|
6 g8g

|i|
2 g3

so L(s′′i ) ≤ 4|i|+ 4.
For all n ∈ N we have that s′n = s′′

(n)b−1
2

or s′n = φ1s
′′
(n)b−1

2

φ1 = g1s
′′
(n)b−1

2

g1 so L(s′n) ≤ L(s′′
(n)b−1

2

) + 2.

Therefore we have

L(sn) = L(s′3n−2s
′
3n−1s

′
3n)

≤ L(s′3n−2) + L(s′3n−1) + L(s′3n)

≤ L(s′′
(3n−2)b−1

2
) + L(s′′

(3n−1)b−1
2

) + L(s′′
(3n)b−1

2
) + 6

≤ 4|(3n− 2)b−1
2 |+ 4|(3n− 1)b−1

2 |+ 4|(3n)b−1
2 |+ 18

≤ 4(3n− 2) + 4(3n− 1) + 4(3n) + 18

≤ 36n+ 6 = an.

Theorem 3.1.7. If Ω is an infinite set then Sym(Ω) is quasi-bounded and satisfies the semigroup Bergman Property.

Proof. The following proof is based on the proof of Lemma 2.4 in [4].
By Theorem 3.1.5 it suffices to show that Sym(Ω) is quasi-bounded.
Let (an)n∈N be as in Theorem 3.1.6.
We may assume an is strictly increasing as an can be replaced by max{am + 1 : m ≤ n} and the required property holds.
Suppose for a contradiction that there exists ψ : Sym(Ω)→ N such that there exists Cψ such that

(st)ψ ≤ (s)ψ + (t)ψ + Cψ for all s, t ∈ Sym(Ω)

and ψ is unbounded.
As ψ is unbounded, for all n ∈ N there exists s ∈ Sym(Ω) such that (s)ψ > n.
Therefore we can construct a sequence (sn)n∈N such that (sn)ψ > a2

n for all n ∈ N.
We now construct a set of generators G = (g1, g2, g3, g4, g5, g6, g7, g8) for (sn)n∈N as done in Theorem 3.1.6.
Let M := max{(g)ψ : g ∈ G}. Each sn can be written as a product of length at most an in elements of G it therefore
follows from induction that (sn)ψ ≤ anCψ + anM for all n ∈ N. For all sufficiently large n we have that an > Cψ + M
and therefore

(sn)ψ ≤ anCψ + anM = an(Cψ +M) < a2
n < (sn)ψ.

So (sn)ψ < (sn)ψ. This is a contradiction.

3.2 Cofinality and Strong Cofinality

In this section we will be exploring the cofinality and strong cofinality of infinite symmetric groups.
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Definition 3.2.1 Let S be a semigroup. A cofinal chain of S, is defined to be a chain of strict subsemigroups (Si)i∈κ
of S indexed by the ordinals less than some cardinal κ such that

S =
⋃
i∈κ

Si

and Si ⊆ Sj for i ≤ j.

Definition 3.2.2 Let S be a semigroup. A strong cofinal chain of S, is defined to be a chain of strict subsets (Si)i∈κ of
S indexed by the ordinals less than some cardinal κ such that

S =
⋃
i∈κ

Si

and Si ⊆ Sj for i ≤ j and for all i ∈ κ there exists j < κ such that SiSi ⊆ Sj .

Theorem 3.2.3. If S is a non-finitely generated semigroup, then there exist cofinal and strong cofinal chains of S.

Proof. The following proof is based on Note 3 of [5].
Let S := {ti : i < |S|} be an enumeration of S. Let Si := 〈{tj : j < i}〉S for i < |S|. We will show that (Si)i<|S| is a
cofinal chain.
We have that S =

⋃
i<|S| Si and Si ⊆ Sj for i ≤ j. To see that the Si are strict subsemigroups observe that each Si is

generated by a set indexed by an ordinal i < |S| and therefore is generated by a set of strictly smaller cardinality. If S is
countable it follows that S 6= Si as Si is finitely generated, and if S is uncountable it follows that S 6= Si as |Si| < |S|. We
therefore have that (Si)i<|S| is a cofinal chain. As each Si is a semigroup it follows that SiSi ⊆ Si and therefore (Si)i<|S|
is also a strong cofinal chain as required.

Note that the validity of the following two definitions follows from the previous theorem together with the fact that the
cardinals are a subclass of the ordinals and thus any class of cardinals has a least element.

Definition 3.2.4 Let S be a non-finitely generated semigroup. The cofinality of S, denoted cf(S), is defined to be the
smallest cardinal κ such that there exists a cofinal chain of S indexed by κ.

Definition 3.2.5 Let S be a non-finitely generated semigroup. The strong cofinality of S, denoted scf(S), is defined to
be the smallest cardinal κ such that there exists a strong cofinal chain of S indexed by κ.

Note that Sym(Ω) is not finitely generated for an infinite Ω as it is uncountable by Theorem 1.3.7 and therefore we can
assign it a cofinality and a strong cofinality. In addition by the proof of Theorem 3.2.3 we have

scf(Sym(Ω)) ≤ cf(Sym(Ω)) ≤ |Sym(Ω)| = 2|Ω|.

Theorem 3.2.6. If Ω is an infinite set, then cf(Sym(Ω)) > ℵ0.

Proof. Suppose for a contradiction that cf(Sym(Ω)) ≤ ℵ0. Then there is a sequence of strict subsemigroups (Si)i∈N of
Sym(Ω) who’s union is Sym(Ω). Let ψ : Sym(Ω)→ N be defined by

(f)ψ = min{n ∈ N : f ∈ Sn}.

Let s, t ∈ Sym(Ω). Without loss of generality we may assume that Sψ(s) ⊆ Sψ(t), it follows that st ∈ Sψ(t). Letting Cψ = 0
we have (st)ψ ≤ (t)ψ ≤ (t)ψ + (s)ψ + Cψ.
By Theorem 3.1.7 it follows that Sym(Ω) is quasi-bounded and so this function is bounded above by some natural number
N . It follows then that for all f ∈ Sym(Ω), we have f ∈ SN so SN ≮ Sym(Ω) this is a contradiction.

Theorem 3.2.7. If Ω is an infinite set, then scf(Sym(Ω)) > ℵ0.

Proof. The following proof is based on the proof of proposition 2.2 in [4].
Suppose for a contradiction that scf(Sym(Ω)) ≤ ℵ0. Then there is a chain of strict subsets (Si)i∈N of Sym(Ω) such that
Sym(Ω) =

⋃
i∈N Si, Si ⊆ Sj for i ≤ j and for all i ∈ N there exists j ∈ N such that SiSi ⊆ Sj .

We have that Sym(Ω) =
⋃
i∈N〈Si〉S and 〈Si〉S ⊆ 〈Sj〉S for i ≤ j. From Theorem 3.2.6 we have that cf(Sym(Ω)) > ℵ0 and

so we must have that 〈Sj〉S = Sym(Ω) for some j ∈ N. By Theorem 3.1.7 Sym(Ω) has the Bergman property so it follows
that Sym(Ω) =

⋃n
k=1 S

k
j for some n ∈ N.

To reach the desired contradiction it suffices to show that Sym(Ω) =
⋃n
k=1 S

k
j ⊆ SN for some N ∈ N.

We have that SjSj ⊆ Sj2 for some j2 ∈ N. It follows that SjSjSj ⊆ Sj2Sj ⊆ (Smax j,j2)2 ⊆ Sj3 for some j3 ∈ N. By
induction for all i ≤ n we can construct ji such that Sij ⊆ Sji . It therefore follows that ∪nk=1S

k
j ⊆ Smax{ji:i≤n} as

required.
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3.3 Shuffling Infinite Planes

Throughout the next two sections we will without loss of generality consider Ω as A× A where A is an abelian group of
infinite order (note that there are abelian groups of all infinite cardinalities, for example

⊕
i∈κ Z2 where κ is your cardinal

). We will consider the operation on A using additive notation. Let A be indexed by {ai : i ∈ |A|} with a0 = idA. This
indexing gives us a well ordering on the elements of A. We will use the functions π1, π2 to be the projection of a tuple
onto its first and second coordinates respectively and if we have functions Si, Si+1 . . . Sk we will use the notation Si→k to
denote SiSi+1 . . . Sk. In this section we try to write the elements of Sym(Ω) as the product of ‘slides’.

Definition 3.3.1 Let f : A→ A be a function. Then a vertical slide vf : Ω→ Ω is defined by

(x, y)vf = (x, y + (x)f).

Similarly a horizontal slide hf : Ω→ Ω is defined by

(x, y)hf = (x+ (y)f, y).

We will use the word slide to refer to either of these.

Definition 3.3.2 Let V be used to denote the group of all vertical slides of Ω, and similarly let H denote the group of
all horizontal slides of Ω. Note that these groups are abelian as A is abelian.

We will start by showing any moiety can be mapped into the diagonal line {(x, y) ∈ A× A : x = y} and then show from
this that we can construct any element of Sym(Ω).

Definition 3.3.3 Let x ∈ A. Then the vertical and horizonal lines of x are defined respectively by:

vx = {(x, y) : y ∈ A}, hx = {(y, x) : y ∈ A}.

The word line will be used to describe any set of either of these types.

Definition 3.3.4 Let L ⊆ Ω be a line and let S ⊆ Ω. We say that L is S-contained if we have that L ⊆ S, we say L is
S-disjoint if L ⊆ Sc and we say that L is S-sporadic if we have neither of these.

Theorem 3.3.5. If M is a moiety of Ω then either there are |Ω| = |A| M -sporadic horizontal lines, or there are |Ω|
M-sporadic vertical lines.

Proof. The following proof is based on the proof of Lemma 1 in [13].
Suppose not, then we have |{x ∈ A : vx is M -sporadic }| < |A| and |{x ∈ A : hx is M -sporadic }| < |A| and thus also
|{x ∈ A : vx is M -contained or M -disjoint}| = |A|.
Case 1: If |{x ∈ A : vx is M -contained }| = |A| and |{x ∈ A : vx is M-disjoint }| = |A| then it follows that for all y ∈ A
we have hy is M -sporadic a contradiction.
Case 2: If |{x ∈ A : vx is M -contained }| < |A| then it follows that we have |{x ∈ A : vx is M -contained or M -sporadic }| <
|A| and |{x ∈ A : vx is M -disjoint }| = |A|. It follows that {x ∈ A : hx is M -contained } = ∅. As |{x ∈ A :
hx is M -sporadic }| < |A| we have that |{x ∈ A : hx is M -sporadic or M -contained }| < |A|. However

M ⊆ {x ∈ A : vx is M -sporadic or M -contained } × {x ∈ A : hx is M -sporadic or M -contained }.

Thus it follows that |M | < |A×A| = |A| as M is a moiety this is a contradiction.
Case 3: If |{x ∈ A : vx is M -disjoint }| < |A| then it follows that we have |{x ∈ A : vx is M -disjoint or M -sporadic }| <
|A| and |{x ∈ A : vx is M -contained }| = |A|. It follows that {x ∈ A : hx is M -disjoint } = ∅. As |{x ∈ A :
hx is M -sporadic }| < |A| we have that |{x ∈ A : hx is M -sporadic or M -disjoint }| < |A|. However

M c ⊆ {x ∈ A : vx is M -sporadic or M -disjoint } × {x ∈ A : hx is M -sporadic or M -disjoint }.

Thus it follows that |M c| < |A×A| = |A| as M is a moiety this is a contradiction.

Theorem 3.3.6. If M is a moiety, then there exists a slide S such that either all horizontal lines are (M)S-sporadic, or
all vertical lines are (M)S-sporadic.

Proof. The following proof is based on the proof of Lemma 2 in [13].
By Theorem 3.3.5 we may assume without loss of generality that there are |A| M -sporadic horizontal lines.
The idea is that there are ‘lots’ of M -sporadic horizontal lines, so for each vertical line we can slide 2 M -sporadic horizontal
lines in such a way that they each put a specific point into our vertical line. One of which comes from M and one of which
doesn’t.
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Let {M1,M2} be a partition of {x ∈ A : hx is M -sporadic} into moieties . Let φ1 : M1 → A and φ2 : M2 → A be
bijections. Let φ3 : {x ∈ A : hx is M -sporadic} → A and φ4 : {x ∈ A : hx is M -sporadic} → A be such that for all x ∈ A
such that hx is M-sporadic we have ((x)φ3, x) ∈M and ((x)φ4, x) /∈M .
Let f : A→ A be defined by

(a)f =

 −(a)φ3 + (a)φ1 a ∈M1

−(a)φ4 + (a)φ2 a ∈M2

a otherwise

 .

Let S := hf . For all x ∈ A we have

(x, (x)φ−1
1 ) = ((x)φ−1

1 φ3−(x)φ−1
1 φ3+(x)φ−1

1 φ1, (x)φ−1
1 ) = ((x)φ−1

1 φ3+(x)φ−1
1 f, (x)φ−1

1 ) = ((x)φ−1
1 φ3, (x)φ−1

1 )hf ∈ (M)S,

(x, (x)φ−1
2 ) = ((x)φ−1

2 φ4−(x)φ−1
2 φ4+(x)φ−1

2 φ2, (x)φ−1
2 ) = ((x)φ−1

2 φ4+(x)φ−1
2 f, (x)φ−1

2 ) = ((x)φ−1
2 φ4, (x)φ−1

2 )hf /∈ (M)S

and thus vx is (M)S-sporadic as required.

For the rest of the section on shuffling infinite planes, it is required that the reader is familiar with the principals of
transfinite recursion and ordinal multiplication. However the remaining sections after this one will not require this, and
will also not require the remaining results of this section.

Definition 3.3.7 Let P be the set of 4-tuples (x,X, Y0, Y1) where x ∈ A, X is an initial segment of A, Y0, Y1 ⊆ A,
|Y0|, |Y1| ≤ 2 and X,Y0, Y1 are pairwise disjoint.

Theorem 3.3.8. The set P can be indexed by an ordinal α as {pi = (xi, Xi, Y0,i, Y1,i) : i ∈ α}, such that we have
{pi ∈ P : {xi} ∪Xi ∪ Y0,i ∪ Y1,i ⊆ {aj : aj < aM}} is bounded above (in the well order given by the indexing of P ) for all
aM ∈ A. In addition there exist ti ∈ A such that {ti +Xi ∪ Y0,i ∪ Y1,i : i ∈ α} are pairwise disjoint.

Proof. This proof is based on the proof of Lemma 3 in [13].
By the axiom of choice let cp : P(P )\{∅} → P and ca : P(A)\{∅} → A be choice functions.
By transfinite recursion we define the following for i ∈ 2|Ω| (until P has been indexed):

1. Ai :=
⋃
j<i

({xj} ∪Xj ∪ Y0,j ∪ Y1,j}),

2. pi := cp({(x,X, Y0, Y1) ∈ P : {x} ∪ X ∪ Y0 ∪ Y1 ⊆ Ai}\{pj : j < i}) unless this set is empty in which case
pi := (min (A\

⋃
j<iAj), ∅, ∅, ∅) (if this set is empty then we are done),

3. ti := ca(A\
⋃
j<i(tj +Xj ∪ Y0,j ∪ Y1,j −Xi ∪ Y0,i ∪ Y1,i)).

Note that A\ ∪j<i (tj +Xj ∪ Y0,j ∪ Y1,j −Xi ∪ Y0,i ∪ Y1,i) is non-empty as we are removing less than |A| points from A.
Note that by construction we have {pi ∈ P : {xi}∪Xi∪Y0,i∪Y1,i ⊆ {aj : j < M}} is bounded above by (aM+2, ∅, ∅, ∅), and
if {ti+Xi∪Y0,i∪Y1,i : i ∈ |Ω|} were not pairwise disjoint then we would have (ti+Xi∪Y0,i∪Y1,i)∩(tj+Xj∪Y0,j∪Y1,j) 6= ∅
for some i > j and therefore ti ∈ (tj +Xj ∪ Y0,j ∪ Y1,j −Xi ∪ Y0,i ∪ Y1,i) contradicting its definition. Finally |Ω| ≤ |P | ≤
|Ω| × |Ω| × 2× 2 = |Ω| so |Ω| = |P | and so this process must terminate at some ordinal α < 2|Ω|.

Theorem 3.3.9. Let M be a moiety of Ω. Then there exist slides S1, S2 such that for all pi ∈ P we have one of the
following:

1. {(xi, ti + b) : b ∈ Y1,i} ⊆ (M)S1→2 and {(xi, ti + c) : c ∈ Xi ∪ Y0,i} ⊆ ((M)S1→2)c,

2. {(ti + b, xi) : b ∈ Y1,i} ⊆ (M)S1→2 and {(ti + c, xi) : c ∈ Xi ∪ Y0,i} ⊆ ((M)S1→2)c.

Proof. The following proof is based on the proof of Lemma 3 in [13].
Let S1 be as in Theorem 3.3.6 and suppose that all horizontal lines are (M)S1-sporadic. By Theorem 3.3.8 we have
{ti +Xi ∪ Y0,i ∪ Y1,i : i ∈ α} are pairwise disjoint. Let φ1 : A→ A and φ2 : A→ A be such that ((x)φ1, x) ∈ (M)S1 and
((x)φ2, x) /∈ (M)S1. Let f : A→ A be defined by

(a)f =

 −(a)φ1 + xi a ∈ (ti + Y1,i)
−(a)φ2 + xi a ∈ (ti +Xi ∪ Y0,i)
a otherwise

 .

Let S2 := hf . For all i ∈ α, b ∈ Y1,i and c ∈ Xi ∪ Y0,i we have

(xi, ti + b) = ((ti + b)φ1 − (ti + b)φ1 + xi, ti + b) = ((ti + b)φ1, ti + b)hf ∈ (M)S1→2,

(xi, ti + c) = ((ti + c)φ2 − (ti + c)φ2 + xi, ti + c) = ((ti + c)φ2, ti + c)hf /∈ (M)S1→2.

Thus the first condition is satisfied.
If instead all vertical lines are (M)S1-sporadic we can conclude by symmetry that condition 2 can be satisfied by a
symmetric choice of S2.
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Theorem 3.3.10. Let M be a moiety of Ω. If Ω is countable then there exist slides S1, S2, S3, S4, S5 such that (M)S1→5 ⊆
{(x, y) ∈ A×A : x = y}.

Proof. The following proof is based on the proof of Lemma 4 in [13].
Let S1, S2 be as in Theorem 3.3.9. Without loss of generality for all pi ∈ P we have {(xi, ti + b) : b ∈ Y1,i} ⊆ (M)S1→2

and {(xi, ti + c) : c ∈ Xi ∪Y0,i} ⊆ ((M)S1→2)c. We proceed by induction. Let k0 = 0, X0 = Y0 = Z0 = {a0}, b0 = c0 = a0.

1. Let Xn+1 := {ai ∈ A : i ≤ kn and (ai, an+1 + ci) ∈ (M)S1→2}.

2. Let kn+1 > kn be such that (Xn+1 + min(A\
⋃n
i=0 Zi) − akn+1

) ∩ (
⋃n
i=0 Zi) = ∅. This must exist as |(Xn+1 +

min(A\
⋃n
i=0 Zi))− (

⋃n
i=0 Zi)| is finite and therefore its complement must contain elements greater than akn .

3. Let bn+1 := min(A\
⋃n
i=0 Zi)−akn+1 . Note this means that (Xn+1 + bn+1)∩ (

⋃n
i=0 Zi) = ∅ by the definition of kn+1.

4. Let ci for kn < i ≤ kn+1 be defined such that: (akn+1
, an+1 + ckn+1

) ∈ (M)S1→2 and for all other kn < i ≤ kn+1

and j ≤ n + 1 we have (ai, aj + ci) /∈ (M)S1→2. This can be done by the definition of S1, S2 as (akn+1
, {aj : j <

n+ 1}, ∅, {an+1}) ∈ P and (ai, {aj : j < n+ 1}, ∅, ∅) ∈ P for kn < i < kn+1.

5. Let Yn+1 := Xn+1 ∪ {akn+1}.

6. Let Zn+1 := Yn+1 + bn+1. Note that Zn+1 is disjoint from
⋃n
i=0 Zi (by 3).

As each Zn contains min(A\ ∪n−1
i=0 Zi) (by 3,5,6) we have that

⋃
n∈N Zn = A. In addition (by 6) we have that the Zn are

disjoint. So we have the Zn partition A.
Let S3 := vf3 where f3 is defined by (ai)f3 = −ci. Let S4 := hf4 where f4 is defined by (ai)f4 = bi. Let S5 := vf5 where
f5 is defined by (ai)f5 = ai − ani (where Zni contains ai).
We have that Yn = {ai ∈ A : (ai, an) ∈MS1→3} as if ai ∈ Yn we have that (ai, an+ ci) ∈MS1→2 (by 1,4,5) and if ai /∈ Yn
we have that (ai, an + ci) /∈MS1→2 (by 1,5 if i ≤ kn and by 4,5 if i > kn).
We therefore have (by 6) that Zn = {ai ∈ A : (ai − bn, an) ∈MS1→3} = {ai ∈ A : (ai, an) ∈MS1→4}.
So we have that if (ai, an) ∈ MS1→4 then ai ∈ Zn and thus (ai, an)S5 = (ai, an − an + ai) = (ai, ai) ∈ {(x, y) ∈ A × A :
x = y} and thus MS1→5 ⊆ {(x, y) ∈ A×A : x = y}.

Theorem 3.3.11. Let M be a moiety of Ω. If Ω is uncountable then there exist slides S1, S2, S3, S4, S5 such that
(M)S1→5 ⊆ {(x, y) ∈ A×A : x = y}.

Proof. The following proof is based on the proof of Lemma 4 in [13].
Let S1, S2 be as in Theorem 3.3.9. Without loss of generality for all pi ∈ P we have {(xi, ti + b) : b ∈ Y1,i} ⊆ (M)S1→2

and {(xi, ti + c) : c ∈ Xi ∪ Y0,i} ⊆ ((M)S1→2)c. We first re-index A\{idA} = {ai : i ∈ |A|} and we define (Ai)i∈|A| to be
a cofinal chain for A such that A0 = {idA} and for all i ∈ |A| we have Ai is a group, a2i, a2i+1 ∈ Ai+1 and [Ai+1 : Ai] ≥ 4
(where [G1 : G2] denotes the index of G2 as a subgroup of G1). This can be done by transfinite recursion as follows:

1. if i = 0 then let Ai := {idA},

2. if i is a successor ordinal let Ai := 〈{aj : j ≤ min{k ≥ 2i+ 1 : [〈{aα : α ≤ k}〉G : Ai] ≥ 4}}〉G,

3. if i is a limit ordinal then Ai :=
⋃
j<iAj .

For i ∈ |A| we define ci, di,mi by transfinite recursion.

1. Let ci ∈ Ai+1\Ai,

2. Let di ∈ Ai+1\((Ai+ci)∪ (Ai+c−1
i )∪Ai). Note that we can do this as [Ai+1 : Ai] ≥ 4. It follows from the definition

of di that idA, ci, di, ci + di are in different cosets of Ai in Ai+1,

3. For aj ∈ Ai+1\Ai by the definition of S1, S2 we can define mj to be such that:

(a) (aj , ak −mj) /∈ (M)S1→2 for k < 2i and (aj ,−mj) /∈ (M)S1→2,

(b) If aj ∈ (Ai − ci) then (aj , a2i −mj) /∈ (M)S1→2

(c) If aj = ak − di − ci for some ak ∈ Ai and (ak, a2i+1 −mk) /∈ (M)S1→2 then (aj , a2i −mj) ∈ (M)S1→2,

(d) If aj = ak − di − ci for some ak ∈ Ai and (ak, a2i+1 −mk) ∈ (M)S1→2 then (aj , a2i −mj) /∈ (M)S1→2,

(e) If aj ∈ Ai+1\(Ai ∪ (Ai − ci) ∪ (Ai − (di + ci))) then (aj , a2i −mj) ∈ (M)S1→2,

(f) If aj = ak + ci + di for some ak ∈ Ai and (ak, a2i −mk) /∈ (M)S1→2 then (aj , a2i+1 −mj) ∈ (M)S1→2,

(g) If aj = ak + ci + di for some ak ∈ Ai and (ak, a2i −mk) ∈ (M)S1→2 then (aj , a2i+1 −mj) /∈ (M)S1→2,

(h) If aj ∈ Ai+1\(Ai ∪ (Ai + (ci + di))) then (aj , a2i+1 −mj) /∈ (M)S1→2.
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Let S3 := vf3
where f3 is defined by (ai)f3 = mi and (idA)f3 is such that (idA,−(idA)f3) ∈ (M)S1→2. Let S4 := hf4

where f4 is defined by (a2i)f4 = ci, (a2i+i)f4 = −di and (idA)f4 = idA. Note that for all non-identity elements x ∈ A
there is a unique i ∈ |A| such that x ∈ Ai+1\Ai. We will now show that for all x ∈ A there is at most one point in
MS1→4 ∩ vx. For i ∈ |A| we have (by 3b and 3h) that:

(−ci, a2i − (−ci)f3) /∈ (M)S1→2 =⇒ (−ci, a2i) /∈ (M)S1→3 =⇒ (idA, a2i) /∈ (M)S1→4,

(di, a2i+1 − (di)f3) /∈ (M)S1→2 =⇒ (di, a2i+1) /∈ (M)S1→3 =⇒ (idA, a2i+1) /∈ (M)S1→4.

Let aj ∈ Ai+1\Ai.
For k < i we have aj−ck ∈ Ai+1\Ai and aj+dk ∈ Ai+1\Ai therefore (by 3a) we have (aj−ck, a2k−(aj−ck)f3) /∈ (M)S1→2

and (aj + dk, a2k+1 − (aj + dk)f3) /∈ (M)S1→2. For k > i we also have these two conditions (by 3b and 3h).
Therefore for i 6= k we have:

(aj − ck, a2k− (aj − ck)f3) /∈ (M)S1→2 =⇒ (aj − ck, a2k) /∈ (M)S1→3 =⇒ (aj , a2k) /∈ (M)S1→4 =⇒ (aj , aj +a2k−a2i),

(aj + dk, a2k+1 − (aj + dk)f3) /∈ (M)S1→2 =⇒ (aj + dk, a2k+1) /∈ (M)S1→3 =⇒ (aj , a2k+1) /∈ (M)S1→4.

If aj = ak − di for some ak ∈ Ai then (by 3d) we have one of:

(ak, a2i+1 −mk) /∈ (M)S1→2 =⇒ (ak, a2i+1) /∈ (M)S1→3 =⇒ (aj , a2i+1) /∈ (M)S1→S4
,

(aj − ci, a2i − (aj − ci)f3) /∈ (M)S1→2 =⇒ (aj − ci, a2i) /∈MS1→3 =⇒ (aj , a2i) /∈ (M)S1→4.

If aj = ak + ci for some ak ∈ Ai. then (by 3g) we have one of:

(ak, a2i −mk) /∈MS1→2 =⇒ (ak, a2i) /∈MS1→3 =⇒ (aj , a2i) /∈MS1→4,

(aj + di, a2i+1 − (aj + di)f3) /∈MS1→2 =⇒ (aj + di, a2i+1) /∈MS1→3 =⇒ (aj , a2i+1) /∈MS1→4.

Otherwise by (3h) we have

(aj + di, a2i+1 − (aj + di)f3) /∈MS1→2 =⇒ (aj + di, a2i+1) /∈MS1→3 =⇒ (aj , a2i+1) /∈MS1→4.

We therefore have that vidA∩(M)S1→5 contains at most (idA, idA) and for all aj we have at most one of (aj , a2i), (aj , a2i+1)
in vaj ∩ (M)S1→4 and no other points. Thus we can construct a vertical slide S5 such that MS1→5 ⊆ {(x, y) ∈ A × A :
x = y}.

Theorem 3.3.12. If M is a moiety of Ω, then there exist slides S1, S2, S3, S4, S5 such that (M)S1→5 ⊆ {(x, y) ∈ A×A :
x = y}.
Proof. Take the previous two theorems together.

Now that we can easily permute moieties by first moving them into a diagonal, permuting the diagonal, and moving them
back again.

Theorem 3.3.13. Let M be a moiety and let p ∈ SymΩ(M) then there exist 11 slides S1, S2 . . . S11 such that S1→11|M =
p|M .

Proof. The following proof is based on the proof of Claim 11 in [12].
Let S1, S2, S3, S4, S5 be as in Theorem 3.3.12 and for 6 < n < 12 let Sn := S−1

12−n . Without loss of generality assume that
S5 is a vertical slide. Let I : M → A be defined by (x)I = (x)S1→5π1 = (x)S1→5π2.
Let f1 : A→ A and f2 : A→ A be defined by:

(a)f1 =

{
(a)I−1pI − a a ∈ img(I)
a0 otherwise

}
, (a)f2 =

{
a− (a)I−1p−1I a ∈ img(I)
a0 otherwise

}
.

Let S′5 := vf1 and S6 := hf2 . We now have for x ∈M

(x)S1→5S
′
5S6→11 = ((x)I, (x)I)S′5S6→11

= ((x)I, (x)I + (x)II−1pI − (x)I)S6→11

= ((x)I, (x)pI)S6→11

= ((x)I + (x)pI − (x)pII−1p−1I, (x)pI)S7→11

= ((x)I + (x)pI − (x)I, (x)pI)S7→11

= ((x)pI, (x)pI)S7→11

= (x)p.

Thus S1→5S
′
5S6→11|M = p|M and as S5 and S′5 are both vertical slides it follows that S5S

′
5 is also a single vertical slide

and thus we have the required result.
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Theorem 3.3.14. Let M be a moiety of Ω and let p ∈ SymΩ(M). Then there are slides S1, S2 . . . S44 such that p = S1→44.

Proof. The following proof is based on the proof of Claim 12 in [12].
Let {M1,M2} be a partition ofM c into moieties. By Theorem 2.3.7 let p1, p2 ∈ SymΩ(M) be such that p−1

1 p−1
2 p1p2 = p. By

Theorem 3.3.13 let S1, S2 . . . S22 be such that S1→11|M∪M1
= p−1

1 |M∪M1
and S12→22|M∪M2

= p−1
2 |M∪M2

. Let Sn := S−1
34−n

for 23 ≤ n ≤ 33 and Sn = S−1
56−n for 34 ≤ n ≤ 44.

Let (x, y) ∈ Ω.

(x, y)S1→44 =

 (x, y)p−1
1 S12→44 (x, y) ∈M

(x, y)S12→44 (x, y) ∈M1

((x, y)S1→11)S12→44 (x, y) ∈M2


=

 (x, y)p−1
1 p−1

2 S23→44 (x, y) ∈M
((x, y)S12→22)S23→44 (x, y) ∈M1

((x, y)S1→11)S23→44 (x, y) ∈M2


=

 (x, y)p−1
1 p−1

2 p1S34→44 (x, y) ∈M
((x, y)S12→22)S34→44 (x, y) ∈M1

(x, y)S34→44 (x, y) ∈M2


=

 (x, y)p−1
1 p−1

2 p1p2 (x, y) ∈M
(x, y) (x, y) ∈M1

(x, y) (x, y) ∈M2


= (x, y)p.

The following theorem gives a slight alteration to the idea given in [12]. This slightly improves the number of slides
needed to generate the entire symmetric group (from 81 to 55).

Theorem 3.3.15. Let p ∈ Sym(Ω), then there exist 55 slides S1, S2 . . . S55 such that p = S1→55.

Proof. Let P be the partition of Ω into disjoint cycles of p.
Case 1: If we have that |P | = |Ω| then let Mp be a moiety of P and let M := ∪Mp. We have that p = p|Mp|Mc . By
Theorem 3.3.13 let S1, S2 . . . S11 be such that p|M = S1→11|M . By Theorem 3.3.14 we can find S12,13,14...55 such that
(S1→11)−1(p|M )(p|Mc) = S12→55 as this product fixes the moiety M pointwise. We therefore have that

S1→55 = (S1→11)S12→55 = (S1→11)(S1→11)−1(p|M )(p|Mc) = (p|M )(p|Mc) = p.

Case 2: If we have that |P | < |Ω| then as each cycle is countable it follows that Ω is countable. As |Ω| = ℵ0 we have that
p has finitely many cycles and thus has at least one infinite cycle C = (. . . c−1, c0, c1 . . .). Let p1 : Ω→ Ω be defined by

(x)p1 =

 ci+1 x = ci for some i = 0 mod 3
ci−1 x = ci for some i = 1 mod 3
x otherwise

 .

Let M1 := {ci : i 6= 2 mod 3} and M2 := {ci : i = 1 mod 3}. By Theorem 3.3.13 let S1, S2 . . . S11 be such that
p1|M1

= S1→11|M1
. By Theorem 3.3.14 we can find S12→55 such that (S1→11)−1p = S12→55 as this product fixes the

moiety M2 pointwise. We therefore have that

S1→55 = (S1→11)S12→55 = (S1→11)(S1→11)−1p = p.

Corollary 3.3.16. The group Sym(Ω) is equal to (HV )28.

Proof. Let p ∈ Sym(Ω), we can now write p as S1→55 this is an alternating product of elements of H and V so if S1 ∈ H
then S1→55 ∈ (HV )27H ⊆ (HV )28 and if S1 ∈ V then S1→55 ∈ V (HV )27 ⊆ (HV )28

3.4 Products of Abelian Groups

In the previous section on shuffling the plane, the works of Miklos Abert, Tamas Keleti and Peter Komjath gave us a
means for expressing any element of an infinite symmetric group as a product of ’slides’. This gives us a way of writing
any infinite symmetric group as a product of 56 abelian groups. In [14] Akos Seress gives a way to write any infinite
symmetric group as a product of 14 abelian groups. In this section we will further decrease this bound to 10.
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Definition 3.4.1 For t ∈ A, we call a set D ⊆ {(a, t+ a) : a ∈ A} a t-diagonal segment.

Observe that if a 6= b then all a-diagonal segments are disjoint from all b-diagonal segments.

Theorem 3.4.2. Let t ∈ A. If D is a t-diagonal segment, then HV acts fully on D.

Proof. The following proof is based on the proof of Lemma 3 in [14]:
Let g ∈ Sym(D) and let f1 : A→ A and f2 : A→ A be defined by:

(a)f1 = (a− t, a)gπ1 − a+ t, (a)f2 = a+ t− (a, a+ t)g−1π2.

Let (p, p+ t) ∈ D, we have that

(p, p+ t)hf1vf2 = (p+ (p+ t− t, p+ t)gπ1 − (p+ t) + t, p+ t)vf2

= ((p, p+ t)gπ1, p+ t)vf2

= ((p, p+ t)gπ1, p+ t+ (p, p+ t)gπ1 + t− ((p, p+ t)gπ1, (p, p+ t)gπ1 + t)g−1π2)

= ((p, p+ t)gπ1, p+ t+ (p, p+ t)gπ1 + t− ((p, p+ t)gπ1, (p, p+ t)gπ2)g−1π2)

= ((p, p+ t)gπ1, p+ t+ (p, p+ t)gπ1 + t− (p, p+ t)gg−1π2)

= ((p, p+ t)gπ1, p+ t+ (p, p+ t)gπ1 + t− (p+ t))

= ((p, p+ t)gπ1, (p, p+ t)gπ1 + t)

= ((p, p+ t)gπ1, (p, p+ t)gπ2)

= (p, p+ t)g.

So we have that hf1
vf2
∈ HV satisfies that (hf1

vf2
)|D = g as required.

Theorem 3.4.3. If M is a moiety of Ω and t ∈ A, then there exists h1v1h2 ∈ HVH such that Mh1v1h2 ∩D = ∅ for all
t-diagonal segments D.

Proof. By Theorem 3.3.6 we have that there is a slide S ∈ H ∪ V such that either all horizontal lines are (M)S-sporadic
or all vertical lines are (M)S-sporadic.
Case 1: If S ∈ H, and all vertical lines are (M)S-sporadic, then for all x ∈ A choose px ∈ vx\(M)S. Let f : A → A
be defined by (a)f = a + t − pa. It follows that for all (x, y) ∈ M we have (x, y)Svf /∈ D and thus we can choose
h1 = S, v1 = vf and h2 = idA.
Case 2: If S ∈ H, and all horizontal lines are (M)S-sporadic, then we can make a similar argument by using only an
element of H (viewed as a product of two elements of H)
Case 3: If S ∈ V , and all horizontal lines are (M)S-sporadic, then we can make a similar argument by letting h1 := idA
and v1 = S.
Case 4: If S ∈ V , and all vertical lines are (M)S-sporadic, then we can make a similar argument by using only an element
of V (viewed as a product of two elements of V )

Theorem 3.4.4. If M be a moiety of Ω, then there exist abelian groups HM , VM such that HMVM acts fully on M .

Proof. Let D := {(x, y) ∈ A × A : x = y}, we have by Theorem 3.4.2 that HV acts fully on D. Let φ1 : M → D and
φ2 : M c → Dc be bijections. Let IM : Ω→ Ω be the bijection defined by

(x)IM =

{
(x)φ1 x ∈M
(x)φ2 x ∈M c

}
.

AsHV acts fully onD it follows that IM (HV )I−1
M acts fully onM . So we also have that IMHI

−1
M IMV I

−1
M = (IMHI

−1
M )(IMV I

−1
M )

acts fully on M . Let HM := IMHI
−1
M and VM := IMV I

−1
M . As these groups are conjugates of H and V , they are isomorphic

to H and V . In particular they are abelian groups and we have the required result.

Now that we have the required theorems and definitions, we will prove the main result of this section. In Lemma 5 of
[14] Akos Seress makes use of a group D which contains elements of all possible disjoint cycle shapes, this idea is a critical
part of the following proof in which we use a very similar group C.

Theorem 3.4.5. The group Sym(Ω) can be expressed as the product of 10 abelian groups.

Proof. Let L be a moiety of A, t ∈ A\{idA}, D := {(x, y) ∈ A × A : x = y}, D1 := {(a, a) : a ∈ L}, D2 := {(a, a + t) :
a ∈ L}. Let P := {pi : i ∈ |Ω|} be a partition of Dc

1 into countable sets such that there are |Ω| sets of all cardinalities less
than or equal to ℵ0. For all i ∈ |Ω| let ci be the group generated by a |pi|-cycle on pi. Let C :=

∏
i∈|Ω| ci (viewed as a
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permutation group fixing all points of D1). Finally let HD1
, VDc1 , HDc2

, VDc2 be as in Theorem 3.4.4.
Note that all the above groups are abelian as C is a product of cyclic groups acting on disjoint sets and the others are
abelian by construction. We will show that Sym(Ω) = HVHHDc1

VDc2HDc1
VDc1CVDc1HDc1

.
Let g ∈ Sym(Ω) and M := Dg−1. As the image of a moiety under a permutation we have that M is a moiety. By Theorem
3.4.3 we have that there is an element g′ ∈ HVH such that Mg′ ∩ {(a, a+ t) : a ∈ A} = ∅.
Observe that {(a, a+ t) : a ∈ Lc} ⊆ (Mg′)c\D2 and |{(a, a+ t) : a ∈ Lc}| = |Ω| = |({(x, y) ∈ A×A : x = y} ∪D2)c|. Let
φ : (Mg′)c\D2 → (D ∪D2)c be a bijection. Let f ∈ Sym(Dc

2) be defined by

(x)f =

{
(x)g′−1g x ∈Mg′

(x)φ x ∈ (Mg′)c

}
.

As HDc2
VDc2 acts fully on Dc

2 there exists g′′ ∈ HDc2
VDc2 such that g′′|Dc2 = f . We now have that (g′g′′)|M = g|M and

g′g′′ ∈ HVHHDc2
VDc2 . It therefore follows that s := (g′g′′)−1g ∈ Pstab(D) = SymΩ(Dc) ≤G SymΩ(Dc

1). As s|Dc1
fixes D\D1 it has |Ω| 1-cycles, therefore by the definition of C, by choosing either the identity or generating element
of appropriately many ci, there is an element s′ ∈ C such that s′|Dc1 has the same disjoint cycle shape as s|Dc1 . As we
have s, s′ ∈ SymΩ(Dc

L) have the same disjoint cycle shape when restricted to Dc
1 there exists w ∈ SymΩ(Dc

1) such that
ws′w−1 = s. As HDc1

VDc1 acts fully on Dc
1, we have that there exists w′ ∈ HDc1

VDc1 such that w′|Dc1 = w|Dc1 . For all p ∈ Ω
we now have

(p)w′s′w′−1 =

{
(p)w′w′−1 p ∈ D1

(p)s otherwise

}
= (p)s.

It follows that s = w′s′w′−1 ∈ HDc1
VDc1CVDc1HDc1

. Therefore g = g′g′′(g′g′′)−1g = g′g′′s ∈ HVHHDc2
VDc2HDc1

VDc1CVDc1HDcL
as required.
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Chapter 4

Maximal Subgroups of Infinite Symmetric
Groups

In this chapter we aim to construct large families of maximal subgroups of Sym(Ω). In particular we will show that for

any infinite set Ω there exists a family of 22|Ω| maximal subgroups of Ω which are pairwise non-conjugate. To do this we
will first be building groups from ultrafilters using what was established in chapter 1.

4.1 Building Groups from Ultrafilters

The following Theorem will be useful when showing the maximality of certain subgroups.

Theorem 4.1.1. Let Ω be an infinite set and let G ≤G Sym(Ω), then if all moieties of Ω are full in G then G = Sym(Ω).

Proof. The following proof is based on Note 3 of section 4 in [6].
Let G be a group such that all moieties of Ω are full in G.
Let M be a moiety of Ω. We have that M c is also a moiety and therefore G acts on fully on M and M c. Let Gs :=
G ∩ Sstab(M). As G acts fully on M we have that Gs acts fully on M (as the required elements stabilise M setwise).
Let {M1,M2} be a partition of M into moieties. Let g ∈ SymΩ(M1) be such that g has |Ω| cycles of all finite lengths. As
M1 ∪M c is a moiety there exists g′ ∈ G such that g′|M1∪Mc = g|M1∪Mc . We have that g′ ∈ Gs (as it fixes M c pointwise).
We now construct a new element g∗ ∈ Gs by reversing all cycles of odd or infinite length of g′ and preserving the others.
This permutation is an element of Gs as it can be constructed by conjugating g′ by an element of Gs with the required
action on M (noting g′ fixes M c so it’s action on M c is unaffected by conjugation by elements of Gs).
In the product g∗g′ all cycles of odd or infinite length cancel and all cycles of even length are squared. The square of a
cycle of length 2n gives two cycles of length n. It follows that g∗g′ ∈ Gs has 2 ∗ |Ω| = |Ω| cycles of all finite lengths and
none of infinite length.
Therefore Gs contains an element of SymΩ(M) which has |Ω| cycles of all finite lengths and none of infinite length. By
conjugating this element by elements with the appropriate action on M we have that Gs contains all elements of SymΩ(M)
which have |Ω| cycles of all finite lengths and none of infinite length. By Theorem 2.3.7 SymΩ(M) ⊆ Gs. We now have
that SymΩ(M) ≤G G for all moieties M and therefore by Theorem 3.1.3 we have G = Sym(Ω).

Definition 4.1.2 Given an ultrafilter U on an infinite set Ω.

FU := {f ∈ Sym(Ω) : fix(f) ∈ U}.

Theorem 4.1.3. Given an ultrafilter U on an infinite set Ω, we have FU ≤G Sym(Ω).

Proof. Let f ∈ FU then fix(f) = fix(f−1) so f−1 ∈ FU . We have that FU is closed under inverses.
Let f, g ∈ FU we have that fix(f) and fix(g) are in U therefore fix(f) ∩ fix(g) ∈ U . As fix(fg) ⊇ fix(f) ∩ fix(g) we have
fix(fg) ∈ U and fg ∈ FU so FU is also closed under multiplication.

Theorem 4.1.4. Let U be an ultrafilter on an infinite set Ω, then FU is transitive on the moieties of Ω in U .

Proof. The following proof is based on the proof of Theorem 6.4 in [5].
Let M1,M2 ∈ U be moieties of Ω. We will show that there is an element of FU mapping M1 to M2.
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Case 1: If M1\M2 and M2\M1 are both moieties then it follows that |M1\M2| = |M2\M1|. Let φ : M1\M2 →M2\M1

be a bijection and let f ∈ Sym(Ω) be defined by

(x)f =


x x ∈M1 ∩M2

x x ∈ X\(M1 ∪M2)
(x)φ−1 x ∈M2\M1

(x)φ x ∈M1\M2

 .

As M1 ∩M2 ⊆ fix(f) it follows that fix(f) ∈ U and therefore f ∈ FU . We have that (M1)f = M2 as required.
Case 2: Suppose that M1\M2 or M2\M1 is not a moiety. Without loss of generality we assume that M1\M2 is not a

moiety. Then it follows that |Ω| = |(M1\M2)c| and |Ω| > |M1\M2|. We now have the following:

|M1 ∩M2| = |M1\(M1\M2)| = |M1| − |M1\M2| = |Ω|,
|(M1 ∩M2)c| = |M c

1 ∪M c
2 | = |Ω|,

|M1 ∪M2| = |Ω|,
|(M1 ∪M2)c| = |(M2 ∪ (M1\M2))c| = |M c

2 ∩ (M1\M2)c| = |M c
2\(M1\M2)| = |Ω|.

So both M1 ∩M2 and M1 ∪M2 are moieties. Let {M3,M4} be a partition of M1 ∩M2 into moieties. By Theorem 1.4.5
either M3 or M c

3 is in U . If M c
3 ∈ U then M4 = M c

3 ∩M1 ∩M2 ∈ U . So we have that either M3 or M4 is in U .
Consider the set M5 := M4 ∪ (M1 ∪M2)c.

M5\M1 = (M1 ∪M2)c a moiety.

M1\M5 = M1\M4 a moiety (as it contains M3 and its complement contains the complement of M1).

M5\M2 = (M1 ∪M2)c a moiety.

M2\M5 = M2\M4 a moiety (as it contains M3 and its complement contains the complement of M2).

So by Case 1 there exist f1, f2 ∈ FU such that (M1)f1 = M5 and (M5)f2 = M2, it follows that (M1)f1f2 = M2 and we
have the required result.

Theorem 4.1.5. If U is an ultrafilter on an infinite set Ω, then FU is transitive on the moieties of Ω not in U .

Proof. Let M1 and M2 be moieties not in U then both M c
1 and M c

2 are in U by Theorem 1.4.5. By Theorem 4.1.4 there
is an f ∈ FU such that (M c

1 )f = M c
2 . It therefore follows that (M1)f = M2 as required.

Theorem 4.1.6. If U is an ultrafilter on an infinite set Ω, then FU ≤G Sstab(U).

Proof. Let f ∈ FU and let U ∈ U . We have that U ∩ fix(f) ∈ U and (U)f = (U ∩ fix(f))∪ (U\ fix(f))f ⊇ U ∩ fix(f) so we
also have (U)f ∈ U .
Similarly let (U)f ∈ U . We have that (U)f ∩ fix(f) ∈ U and U = ((U)f)f−1 = ((U)f ∩ fix(f)) ∪ ((U)f\ fix(f))f−1 ⊇
(U)f ∩ fix(f) so we also have U ∈ U .

Theorem 4.1.7. If U is an ultrafilter on an infinite set Ω, then Sstab(U) = FU .

Proof. The following proof is based on the proof of Theorem 6.4 in [5].
As by Theorem 4.1.6 we have FU ≤G Sstab(U), it suffices to show that Sstab(U) ≤G FU . Let f ∈ Sstab(U). We will
construct two moieties M1 and M2 which partition Ω. Let (ci)i∈I be the disjoint cycles of f (where I is an index set). Let
each ci of finite order k > 1 be given by (ci,0, ci,1 . . . ci,k−1) and each ci of infinite order be given by (. . . ci,−1, ci,0, ci,1 . . .).
Then we define M1 and M2 as follows:

1. If |fix(f)| < |Ω| then M1 = {ci,j : i ∈ I and j even } ∪ fix(f) and M2 = {ci,j : i ∈ I and j odd }. If there are |Ω|
non-trivial cycles then each contributes at least one element to each of M1 and M2, thus {M1,M2} is a partition
of Ω into moieties. If not then as |fix(f)| < |Ω| we have |supp(f)| = |Ω| so we must have |Ω| = ℵ0 and one of the
cycles is infinite so {M1,M2} is still a partition of Ω into moieties.

2. If |fix(f)| = |Ω| then let {F1, F2} be a partition of fix(f) into moieties. Let M1 := {ci,j : i ∈ I and j even } ∪ F1

and M2 = {ci,j : i ∈ I and j odd } ∪ F2. We have that {M1,M2} is a partition of Ω into moieties.

Suppose for a contradiction that f /∈ FU . It follows that fix(f) /∈ U and thus by Theorem 1.4.5 supp(f) ∈ U . It follows
from the definition of M1 and M2 that supp(f) ⊆M1 ∪ (M1)f and similarly supp(f) ⊆M2 ∪ (M2)f so we have that both
of these sets are in U .
By Theorem 1.4.5 we have that (M1 ∪ (M1)f)c = M2 ∩ (M2)f /∈ U and (M2 ∪ (M2)f)c = M1 ∩ (M1)f /∈ U so by the
definition of a filter we have either M1 or (M1)f is not in U and either M2 or (M2)f not in U . As f ∈ Sstab(U) it follows
that none of M1, (M1)f,M2, (M2)f are in U but as M c

1 = M2 this contradicts Theorem 1.4.5.
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Theorem 4.1.8. Let U be an ultrafilter on a set Ω and let g be a permutation of Ω. Then V := (U)g = {(U)g : U ∈ U}
is an ultrafilter on Ω.

Proof. We first show that V is a filter.

1. As Ω ∈ U we have that Ω = (Ω)g ∈ V.

2. For A,B ∈ V we have A = (A′)g and B = (B′)g for some A′, B′ ∈ U . As U is a filter it follows that A′ ∩B′ ∈ U and
therefore A ∩B = (A′)g ∩ (B′)g = (A′ ∩B′)g ∈ V.

3. Let A ∈ V and let B ⊇ A. Then A = (A′)g for some A′ ∈ U and A′ ⊆ Bg−1 . So Bg−1 ∈ U and therefore B ∈ V.

We now show that V is an ultrafilter. As ∅ /∈ U it follows that ∅ /∈ V.
It therefore suffices to show that there is no filter V ′ such that V ⊂ V ′ ⊂ P (Ω). Suppose for a contradiction that there is
such a V ′. Let U ′ := {(V )g−1 : V ∈ V ′}. By using g−1 with the previous part of the proof we have that U ′ is a filter and
we have that U ⊂ U ′ ⊂ P (X). This contradicts the fact that U is an ultrafilter.

Theorem 4.1.9. Let U be an ultrafilter on an infinite set Ω. The group Sstab(U) is a maximal subgroup of Sym(Ω).

Proof. The following proof is based on the proof of Theorem 6.4 in [5].
First we show Sstab(U) 6= Sym(Ω). Let f ∈ Sym(Ω) be such that fix(f) = ∅, by Theorem 4.1.7 it follows that f /∈ FU =
Sstab(U). Let g ∈ Sym(Ω)\ Sstab(U). Suppose for a contradiction that for all M ∈ U which are moieties of Ω we have
(M)g ∈ U . We have by Theorem 4.1.8 that (U)g is an ultrafilter who’s moieties are all contained in U . In addition by
Theorem 1.4.5 one of M and M c is in (U)g and M c /∈ U so M ∈ (U)g. It follows that U and (U)g have the same moieties
and therefore by Theorem 1.4.6 we have that (U)g = U a contradiction as g /∈ Sstab(U). So we have that there is a
moiety M1 ∈ U such that (M1)g /∈ U . Let M2 be a moiety of Ω, by Theorem 1.4.5 precisely one of M2 and M c

2 is in U .
Without loss of generality suppose that M c

2 ∈ U . We have that FU acts fully on M2 as for all h ∈ SymΩ(M2) we have
fix(h) ⊇M c

2 ∈ U and thus fix(h) ∈ U . By Theorem 4.1.7 FU = Sstab(U) so Sstab(U) acts fully on M2.
By Theorem 4.1.5 for all M /∈ U which are moieties of Ω there exists h ∈ FU = Sstab(U) such that (M)h = M2 it follows
that 〈Sstab(U), g〉G acts fully on all moieties of Ω not in U .
By Theorems 4.1.4 and 4.1.5 for all M ∈ U which are moieties of Ω there exists h1, h2 ∈ FU = Sstab(U) such that
(M)h1 = M1 and ((M1)g)h2 = M2. We now have that (M)h1gh2 = M2 and therefore 〈Sstab(U), g〉G acts fully on all
moieties of Ω in U .
We now have that 〈Sstab(U), g〉G acts fully on all moieties of Ω and therefore by Theorem 4.1.1 〈Sstab(U), g〉G = Sym(Ω).

Theorem 4.1.10. Let U1 and U2 be distinct ultrafilters on an infinite set Ω. Then Sstab(U1) 6= Sstab(U2).

Proof. Let U ∈ U1\U2 be a moiety (this must exist by Theorem 1.4.6). By Theorem 4.1.7 it suffices to prove FU1
6= FU2

.
Choose f ∈ Sym(Ω) such that fix(f) = U then f ∈ FU1

\FU2
and therefore FU1

6= FU2
as required.

Theorem 4.1.11. For all infinite sets Ω, there exists a family of 22|Ω| pairwise non-conjugate maximal subgroups of
Sym(Ω).

Proof. The following proof is based on the proof of corollary 6.5 in [5].

By Theorem 1.4.11 there are 22|Ω| ultrafilters on Ω. It follows from Theorems 4.1.10 and 4.1.9 that there exists a family

of 22|Ω| maximal subgroups of Sym(Ω). As there are only 2|Ω| elements of Sym(Ω) it follows that this family can be

partitioned into 22|Ω| conjugacy classes. By choosing one element of each we have the required result.

4.2 Finite Partition Stabilisers

In this section we will explore more examples of maximal subgroups of infinite symmetric groups in the form of partition
stabilisers.

Theorem 4.2.1. Let Ω be an infinite set, and let F ⊆ Ω be finite. We then have that Sstab({F, F c}) is a maximal
subgroup of Sym(Ω).

Proof. Let f ∈ Sym(Ω)\ Sstab(F ) and g ∈ Sym(Ω). As Sstab({F, F c}) = Sstab(F ) it suffices to show that g ∈
〈Sstab(F ), f〉G.
As f /∈ Sstab(F ) there must exist a point p ∈ F such that (p)f ∈ F c. Let p2 ∈ (F c)f ∩ F c. We have that
((p)f, p2) ∈ Sstab(F ). It therefore follows that (p, (p2)f−1) = f((p)f, p2)f−1 ∈ 〈Sstab(F ), f〉G. For all a ∈ F and b ∈ F c
we have that (a, b) = (a, p)(p, (p2)f−1)((p2)f−1, b) ∈ 〈Sstab(F ), f〉G. Let F be indexed by F = {pi : i < k}. We now have
that g(p1, (p1)g)(p2, (p2)g) . . . (pk, (pk)g) ∈ Sstab(F ). It therefore follows that g ∈ 〈Sstab(F ), f〉G as required.
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Theorem 4.2.2. Let Ω be an infinite set and let Σ1 and Σ2 be infinite subsets of Ω such that |Σ1 ∩Σ2| = |Σ1 ∪Σ2|. We
have that SymΩ(Σ1 ∪ Σ2) = 〈SymΩ(Σ1),SymΩ(Σ2)〉G.

Proof. The following proof is based on the proof of the first lemma of [9].
Let f ∈ SymΩ(Σ1 ∪ Σ2). We have that either |(Σ1 ∩ Σ2)f ∩ Σ1| = |Σ1 ∩ Σ2| or |(Σ1 ∩ Σ2)f ∩ Σ2| = |Σ1 ∩ Σ2|. Without
loss of generality we assume that |(Σ1 ∩ Σ2)f ∩ Σ1| = |Σ1 ∩ Σ2|. Let M be a moiety of (Σ1 ∩ Σ2)f ∩ Σ1. It follows that
M is a moiety of Σ1 and (M)f−1 is a moiety of Σ1 ∩ Σ2, Σ1 and Σ2. Let f ′ ∈ SymΩ(Σ1) be such that (p)ff ′ = p for all
p ∈ (M)f−1. As |Σ1 ∩ Σ2| = |Σ1| we have that Σ1\Σ2 is contained in a moiety of Σ1 and thus there exists an element
g ∈ SymΩ(Σ1) such that Σ1\Σ2 ⊆Mf−1g. As ff ′ fixes Mf−1 it follows that g−1ff ′g ∈ SymΩ(Σ1 ∪Σ2) fixes Σ1\Σ2 and
thus g−1ff ′g ∈ SymΩ(Σ2). So we have that f ∈ g SymΩ(Σ2)g−1f ′−1 ⊆ 〈SymΩ(Σ1),SymΩ(Σ2)〉G as required.

Definition 4.2.3 Let P be a partition of an infinite set Ω into finitely many sets and let κ be an infinite cardinal. The
κ-almost stabiliser of P is defined by

Sstab(P )<κ := {f ∈ Sym(Ω) : there exists f ′ ∈ Sym(P ) such that for all p ∈ P we have |(p)f4(p)f ′| < κ and |p| = |(p)f ′|}.

Theorem 4.2.4. Let P be a partition of an infinite set Ω into finitely many sets and let κ be an infinite cardinal. Then
the κ-almost stabiliser of P is a group.

Proof. Let f, g ∈ Sstab(P )<Ω and let p ∈ P . As (p)fg4(p)f ′g′ ⊆ (((p)f4(p)f ′)g ∪ ((p)f ′g4pf ′g′)) we have that
|(p)fg4(p)f ′g′| ≤ |((p)f4(p)f ′)g|+ |((p)f ′)g4(p)f ′g′)| < κ+ κ = κ and thus fg ∈ Sstab(P )<κ.
It now suffices to show that f−1 ∈ Sstab(P )<κ. Let p ∈ P . We have that |(p)f ′−1| = |p| and

|(p)f−14(p)f ′−1| = |(p)f−1f4(p)f ′−1f | = |(p)4(p)f ′−1f | = |((p)f ′−1)f ′4((p)f ′−1)f | < κ.

Theorem 4.2.5. Let Ω be an infinite set, and let P := {M0,M1 . . .Mk} for some k ≥ 1 be a partition of Ω into
finitely many moieties. We then have that Sstab(P ) is not a maximal subgroup of Sym(Ω). In particular Sstab(P ) <G
Sstab(P )<|Ω| which is maximal.

Proof. The following proof is based on the proof of observation 6.2 in [5].
Let x0 ∈M0 and x1 ∈M1 we have that (x0, x1) ∈ Sstab(P )<|Ω|\ Sstab(P ) and thus Sstab(P ) <G Sstab(P )<|Ω|.
We now show that Sstab(P )<|Ω| is maximal. We first show that Sstab(P )<|Ω| 6= Sym(Ω). Let {M0,1,M0,2} be a partition
of M0 into moieties of M0 and {M1,1,M1,2} be a partition of M1 into moieties of M1. Then we have that |M0,1| = |M1,1|
and thus there is a bijection φ : M0,1 →M1,1. Let g ∈ Sym(Ω) be defined by

(x)g =

 (x)φ x ∈M0,1

(x)φ−1 x ∈M1,1

x otherwise

 .

We have that g /∈ Sstab(P )<|Ω| as |(M0)g4Mi| = |Ω| for all i ≤ k.
Let f ∈ Sym(Ω)\ Sstab(P )<|Ω|. It suffices to show that 〈f, Sstab(P )<|Ω|〉G = Sym(Ω).

Claim: There exist i, j1, j2 such that j1 6= j2, |(Mi)f ∩Mj1 | = |Ω| and |(Mi)f ∩Mj2 | = |Ω|.
Proof of Claim: Suppose for a contradiction that our Claim is false. We partition each Mi as {Mi,0,Mi,1 . . .Mi,k} where
Mi,j := {x ∈Mi : (x)f ∈Mj}. As each Mi is a moiety we have that for every i, that at least one of Mi,0,Mi,1 . . .Mi,k is
a moiety. We also have at most one of these is a moiety as if not that would contradict our assumption that the Claim is
false. In addition for each j there must be an i such that Mi,j is a moiety, and |Mj\(Mi,j)f | < |Ω| as if this were not the
case then f would not be onto Mj . By letting f ′ ∈ Sym(P ) be defined by (Mi)f

′ = Mj for i, j such that Mi,j is a moiety,
it follows that f ∈ Sstab(P )<|Ω| a contradiction.
We now have

SymΩ((Mi)f ∩ (Mj1 ∪Mj2)) ≤G f−1 SymΩ(Mi)f ≤G 〈f, Sstab(P )<|Ω|〉G,

SymΩ(Mj1) ≤G 〈f, Sstab(P )<|Ω|〉G, SymΩ(Mj2) ≤G 〈f, Sstab(P )<|Ω|〉G.

It follows by Theorem 4.2.2 that SymΩ(Mj1 ∪ ((Mi)f ∩ (Mj1 ∪Mj2))) ≤G 〈f, Sstab(P )<|Ω|〉G. By using Theorem 4.2.2
again we then have that SymΩ((Mj2 ∪Mj1 ∪ ((Mi)f ∩ (Mj1 ∪Mj2)))) = SymΩ(Mj1 ∪Mj2) ≤G 〈f, Sstab(P )<|Ω|〉G.
As the elements of P all have the same cardinality we can permute them using elements of Sstab(P ). If follows that for all
i, j ≤ k we have SymΩ(Mi ∪Mj) ≤G 〈f, Sstab(P )<|Ω|〉G. By repeatedly applying Theorem 4.2.2 we will get the required
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result as follows

SymΩ(M0 ∪M1) ≤G 〈f, Sstab(P )<|Ω|〉G and SymΩ(M1 ∪M2) ≤G 〈f, Sstab(P )<|Ω|〉G
=⇒ SymΩ(M0 ∪M1 ∪M2) ≤G 〈f, Sstab(P )<|Ω|〉G and SymΩ(M2 ∪M3) ≤G 〈f, Sstab(P )<|Ω|〉G
=⇒ SymΩ(M0 ∪M1 ∪M2 ∪M3) ≤G 〈f, Sstab(P )<|Ω|〉G and SymΩ(M3 ∪M4) ≤G 〈f, Sstab(P )<|Ω|〉G

...

=⇒ SymΩ(M0 ∪M1 . . . ∪Mk) ≤G 〈f, Sstab(P )<|Ω|〉G
=⇒ SymΩ(∪P ) ≤G 〈f, Sstab(P )<|Ω|〉G =⇒ Sym(Ω) ≤G 〈f, Sstab(P )<|Ω|〉G.

Theorem 4.2.6. Let Ω be an uncountable set, and let P := {N,N c} be a partition of Ω where ℵ0 ≤ |N | < |Ω|. We then
have that Sstab(P ) is not a maximal subgroup of Sym(Ω). In particular Sstab(P ) <G Sstab(P )<|N | which is maximal.

Proof. Let x1 ∈ N and x2 ∈ N c we have that (x1, x2) ∈ Sstab(P )<|N |\Sstab(P ) and thus Sstab(P ) < Sstab(P )<|N |.
We now show that Sstab(P )<|N | is maximal. We first show that Sstab(P )<|N | 6= Sym(Ω). Let N ′ ⊆ N c be such that
|N | = |N ′|. Then we have that there is a bijection φ : N → N ′. Let h be defined by

(x)h =

 (x)φ x ∈ N
(x)φ−1 x ∈ N ′
x otherwise

 .

We have that h /∈ Sstab(P )<|N | as |(N)h4N | = |N | and |(N)h4N c| = |Ω|. Let f ∈ Sym(Ω)\ Sstab(P )<|N |, it suffices to
show that 〈f, Sstab(P )<|N |〉G = Sym(Ω).
Claim: Either |(N)f ∩N c| = |N | or |(N)f−1 ∩N c| = |N |.
Proof of Claim: As f /∈ Sstab(P )<|N | we have that either |N4(N)f | = |N | or |N c4(N c)f | = |N |. We therefore have one
of the following:

1. If |N\(N)f | = |N | then |N | = |(N)f−1\N | = |(N)f−1 ∩N c|.

2. If |(N)f\N | = |N | then |(N)f ∩N c| = |N |.

3. If |N c\(N c)f | = |N | then |N | = |(N c)f−1\N c| = |(N c)f−1 ∩N | = |N c ∩ (N)f |.

4. If |(N c)f\N c| = |N | then |N | = |(N c)f ∩N | = |N c ∩ (N)f−1|.

As 〈f, Sstab(P )<|N |〉G = 〈f−1,Sstab(P )<|N |〉G we may assume without loss of generality that |Nf ∩ N c| = |N |. Let
{N0, N1} be a partition of Nf ∩ N c into moieties. Let N2 ⊂ N c be such that N2 ∩ Nf ∩ N c = ∅ and |N2| = |N |. Let
φ : N1 → N2 be a bijection and let h ∈ Sstab(P ) be defined by

(x)h =

 (x)φ x ∈ N1

(x)φ−1 x ∈ N2

x otherwise

 .

It follows that (N1)h = N2 and thus ((N1)f−1)fhf−1 = (N2)f−1 ⊂ N c. As (N1)f−1 is a moiety of N we have shown that
there is an involution in 〈f, Sstab(P )<|N |〉G which swaps a moiety of N with a subset of N c and fixes all other points.
It follows that, by conjugating this involution by elements of Sstab(P ), we can construct an involution which swaps any
moiety of N with any subset of N c with cardinality |N | and fixes all other points. By partitioning N and a subset of N c

into moieties we can therefore construct an involution in 〈f, Sstab(P )<|N |〉G which swaps N with any subset of N c with
cardinality |N | and fixes all other points. Let M be a moiety of Ω and let NM ⊆ M c\N be such that |NM | = |N |. Let
g ∈ 〈f, Sstab(P )<|N |〉G be an involution swapping NM with N and fixing all other points. We have that g Sstab(P )g−1

acts fully on M and thus as M was arbitrary we have 〈f, Sstab(P )<|N |〉G acts fully on all moieties of Ω. We therefore
have 〈f, Sstab(P )<|N |〉G = Sym(Ω) by Theorem 4.1.1.

We now have all the theorems required to classify which finite partition stabilisers yield maximal subgroups.

Theorem 4.2.7. Let Ω be an infinite set and let P := {Ω0,Ω1 . . .Ωk} be a partition of Ω into finitely many sets. Then
Sstab(P ) is a maximal subgroup of Sym(Ω) if and only if P = {F, F c} where F is finite or P = {S1, S2 . . . Sk−1,

(⋃
i<k Si

)c}
where S1, S2 . . . Sk−1 are singletons.

Proof. We will consider all the ways of partitioning Ω into finitely many sets.
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1. Suppose that P = {S0, S1 . . . Sk−1, (∪i<kSi)c} where S0, S1 . . . Sk−1 are singletons.
It follows that Sstab(P ) = Sstab({∪i<kSi, (∪i<kSi)c}) and therefore by Theorem 4.2.1 that Sstab(P ) is maximal.

2. Suppose that P = {S0, S1 . . . Sk1
,Ω0,Ω1 . . .Ωk2

} where S0, S1 . . . Sk1
are singletons, Ω0,Ω1 . . .Ωk2

are not singletons,
k1, k2 ∈ N and k2 ≥ 2. Let x1 ∈ Ω1 and x2 ∈ Ω2. We have that (x1, x2) ∈ Sstab({∪i≤k1Si,∪i≤k2Ωi})\ Sstab(P )
and therefore we have Sstab(P ) <G Sstab({∪i≤k1Si,∪i≤k2Ωi}) which by Theorem 4.2.1 is maximal and therefore
Sstab(P ) is not maximal.

3. Suppose that P = {F0, F1 . . . Fk1
,Ω0,Ω1 . . .Ωk2

} where F1, F2 . . . Fk1
are finite sets at least one of which has at least

2 elements, Ω0,Ω1 . . .Ωk2
are infinite k1, k2 ∈ N and at least one of k1, k2 is not 1. Similarly to case 2 if k2 6= 1

then Sstab(P ) <G Sstab({∪i≤k1Fi,∪i≤k2Ωi}) which by Theorem 4.2.1 is maximal and therefore Sstab(P ) is not
maximal. If k2 = 1 then we have without loss of generality that F0 has at least 2 elements and k1 > 1. Therefore
if x1 ∈ F0 and x2 ∈ F1 then we have that (x1, x2) ∈ Sstab({∪i≤k1

Fi,∪i≤k2
Ωi})\Sstab(P ) and so Sstab(P ) <G

Sstab({∪i≤k1
Fi,∪i≤k2

Ωi}) which by Theorem 4.2.1 is maximal and therefore Sstab(P ) is not maximal.

4. Suppose that P = {F, F c} where F is finite. It follows immediately by Theorem 4.2.1 that Sstab(P ) is maximal.

5. Suppose that P = {N,Ω0,Ω1 . . .Ωk} where k ∈ N and ℵ0 ≤ |N | < |Ω|. We have that Sstab(P ) ≤G Sstab({∪{s ∈ P :
|s| = |N |}, {∪{s ∈ P : |s| 6= |N |}}}) which is not maximal by Theorem 4.2.6 and therefore Sstab(P ) is not maximal.

6. Suppose that P = {M1,M2 . . .Mk} a partition into moieties of Ω. It follows immediately from Theorem 4.2.5 that
Sstab(P ) is not maximal.
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Chapter 5

Conclusion

I have now proved all the results mentioned in the introduction. If I were to continue, there are various topics I could
explore. Such as the stabilisers of infinite partitions, topologies on the symmetric groups of uncountable sets, or I could
try and decrease the bound from the abelian product section further. I have thoroughly enjoyed learning about infinite
symmetric groups and working on my project as a whole.
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